第一篇:《正弦函数的图象》案例反思已改的
“合作探究”中感知数学美
-----“正弦函数的图像”教学设计
一、设计思想
1.课题:
《正弦函数的图象》---人教B版必修4第一章第三节的第一课时. 2.教材分析:
教材的背景与地位,三角函数是基本初等函数之一,又是学习后继内容和相 关学科的基础,也是解决实际(应用)问题的工具.《三角函数图象与性质》是高中数学人教B版必修4第一章第三节,而本节课为第一课时;这节之前学生学习了函数图像的画法,三角函数线,在此基础上学习如何作出正弦函数图象既是对已学知识应用,又为今后研究正弦函数、余弦函数的性质打下基础,在此起承上启下的重要作用.本节重点是“五点法”作正弦函数的简图.难点是“几何法”作图即利用正弦线画出正弦函数的图象.学情分析:
教学设计关键在于重视以人为本的设计,“以学定教”,这样才能增强教学设计的针对性和预见性.本节之前,学生初步掌握了利用列表描点法画图的技巧,但学生存在差异.学生对简单的指导提不起兴趣,但对利用正弦线作正弦函数的图象又有困难,尤其是对这种作图方式的深刻理解又需要教师的指导.因此要求教师在创设问题时要留给学生思考探索问题的空间,给他们发表自己见解和展示才华的机会.
4.教学设计构思:
学习动机是学生学习系统中重要的动力因素.再作教学设计时需抓住这个突出特点:问题与动手相结合,从剪纸中感知问题,自然引出新的知识点.通过有层级设问方式来引发学生的思考,培养学生发现问题,提出问题的能力,并在动手操作中感受体会图像的特点.这样印象深,记得牢.使学生在发现问题与动手操作中感知数学的图形美.
二、创设情景,兴趣导入
1.情景设计:
课前准备一张稍硬的白纸和一把剪刀.课堂上把白纸卷起来,问学生:“我如果用剪刀把纸卷倾斜剪一截,大家猜猜白纸展开后截面是什么形状?”.生1:可能有同学说是圆,也有同学说是椭圆„ 师:那到底是什么形状呢?下面给大家演示一下.教师拿剪刀把纸卷倾斜剪成两截,展开.会有一条规则的漂亮的线.然后把展开后的白纸展开放在黑板上,会出现一条醒目的波浪线.学生:怎么是这样的形状„.师:(给学生发一些纸)请同学们亲自动手试试? 师:这种波浪线的形状就是我们这节课要研究的正弦函数的图象,引出课题.2.复习回顾
师:前面我们学习了正弦线的定义,同时我们也学习了正弦函数即y=sinx.师:同学们想想,原来我们研究函数是什么思路? 要把握一个函数,就要弄清函数的性质,而要弄清函数性质,就要会画函数的图像,今天我们就从画图像入手,采用什么作图方法.
生2:列表描点法
问题1:大家想想正弦函数有哪些突出特点?
生3:终边相同的角的正弦值相等,角在转圈时正弦值相等。
师:相等、循环,很好。用一个词也就是:周而复始。根据这一特点我们只需画那一部分图象?
生4:画0,2上的图像.师:那正弦函数还有其它特征吗?正弦值还可借助正弦线几何表示出来。下面大家尝试着画出0,2上的图像。以学习小组为单位作正弦函数的图象.问题2:通过上面两种图像的画法, 请同学们想想,在建系时,我们采用哪种方式表示角更好一些?为什么?
生5:用弧度制好.用弧度制后横、纵坐标的单位一致.问题3:大家想想,你在刚才作图时觉得那个地方不好吗?(稍后)有无其它的方法较准确的做出正弦函数图象?
生6:可用单位圆中的正弦线来刻画正弦函数.三、合作探究,获得知识
1.几何法作图
师:下面请大家以小组为单位合作试着画出正弦函数在[0,2π]的图象,把刚才画的改进一下,也可参照课本上的画法,提示学生用正弦线画.请三位同学合作板演,提前准备好相应作图工具以备学生在黑板上作图.教师观察并给予指导.然后请同学叙述作图步骤,同时投影演示.师:作图过程中,有其它疑问吗?如有,请同学们提出来,我们一起讨论解决.师:为什么我们采用这种方法画正弦函数的图象呢?那请同学们思考: 问题4:如何得到正弦函数在R上的图象?
生7:周而复始,通过左右平移[0,2π]上的图象就可得到.(师:通过学生的描述,在多媒体上演示动画过程,以加深学生的印象.)
问题5:若我把图像画在[-π/2 , 3π/2]上,然后平移可以吗?
生8:可以,这个区间长度也为2π,选[0,2π]这个区间是一种习惯..问题6:大家想想,画图时对[0,2π]区间进行怎样的等分好,不等分行吗?
生9:不等分也行,但十二等分取点好,是因为它们是特殊角且对应特殊值,更简单易行,易操作.生10:图像若是对称的,则等分选取能展示出图象的对称美.问题7:采取怎样的等分最好?
生11:若分点少,很难描述图象特征;若分点多,图象准确了,但作图会较麻烦.若少用时间又准确,选用十二等分较好.问题8:为何在单位圆中用正弦线来表正弦值呢?直接由角的大小查表求值描点不行吗?
生12:可以,但有些角的正弦值是无理数,只能取近似值,不易描出对应点的准确位置,不利于精确作图.而单位圆上的正弦线是正弦值只需平移即可,这样准确.2.五点法作图
问题10:刚才的画图中我们感知了图象的变化,周而复始循环往复,那请大家想一下,在精确度要求不高时,如何作出正弦函数图象?找出体现主要特征的点,做到在画图中“心中有图,胸有成竹”.请看你画的图象找出它们来.3(0,0),(,1),(,0),(,1),(2,0)22生:
问题11:请大家思考:为什么选取这五个点呢?
生13:这几个点体现了函数图象的主要特征,刻画出了函数图像的形状.师:(请学生描点画图,体会五点法画图的简洁)先描出这五个关键点,再用平滑的曲线连接起来作正弦曲线的简图的方法叫做“五点作图法”.在精度要求不高的情况下,我们常用五点法作图.四、范例及学以致用
设计意图:规范作图步骤,让学生动手画图体会五点的作用,在连点的时候注意体会曲线的平缓程度.
例1.用五点法作出下列函数的简图用五点法作函数ysinx,x0,2与
y1sinx,x0,2的图象.五、课后评价:
1.课后反思:
本节成功之处:
1)、教学设计对于正弦图像首先从剪纸实验入手形成直观印象是一亮点,然后探究画法,列表,描点、连线——“描点法”作图,由于作图上的误差,很难认识新函数y=sinx的图象的真实面貌.2)、对于“五点法”老师让学生通过观察图像、学生讨论、合作交流得到“五点法”作图,也是本节课中一大的亮点,充分体现以学生为主的教学思路. 参考文献
[1]梁元珍.新课标背景下的《1.4.1正弦函数、余弦函数的图象》教学设计案例[J]数学教学通讯:教师阅读,2011(9):5-7 [2]庄炯林.螺旋探究自然呈现*--任意角的三角函数的教学设计[J].中学数学, 2015(13):13-15.
第二篇:正弦函数余弦函数图象教学设计
正弦函数、余弦函数的图象的教学设计
一、教学内容与任务分析
本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象。本节课的教学是以之前的任意角的三角函数,三角函数的诱导公式的相关知识为基础,为之后学习正弦型函数 y=Asin(ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。
二、学习者分析
学生已经学习了任意三角函数的定义,三角函数的诱导公式,并且刚学习三角函数线,这为用几何法作图提供了基础,但能不能正确应用来画图,这还需要老师做进一步的指导。
三、教学重难点
教学重点:正弦余弦函数图象的做法及其特征
教学难点:正弦余弦函数图象的做法,及其相互间的关系
四、教学目标
1.知识与技能目标
(1)了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图象
(2)掌握正弦函数、余弦函数的图象及特征
(3)掌握利用图象变换作图的方法,体会图象间的联系(4)掌握“五点法”画正弦函数、余弦函数的简图 2.过程与方法目标
(1)通过动手作图,合作探究,体会数学知识间的内在联系(2)体会数形结合的思想
(3)培养分析问题、解决问题的能力 3.情感态度价值观目标
(1)养成寻找、观察数学知识之间的内在联系的意识(2)激发数学的学习兴趣(3)体会数学的应用价值
五、教学过程
一、复习引入
师:实数集与角的集合之间可以建立一一对应关系,而确定的角又有着唯一确定的正弦(或余弦)值。
这样任意给定一个实数x有唯一确定的值sinx(cosx)与之对应,有这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R。
遇到一个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?
我们先来做一个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢
【设计意图】通过动手实验,体会数学与其他的联系,激发学习兴趣。
二、讲授新课
(1)正弦函数y=sinx的图象
下面我们就来一起画这个正弦函数的图象
第一步:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角0,,,„,2π的正弦线正弦线632(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.
【设计意图】通过按步骤自己画图,体会如何画正弦函数的图象。根据终边相同的同名三角函数值相等,所以函数y=sinx,x∈[2k∏,2(k+1)∏,k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2∏)的图象的形状完全一致。于是我们只要将y=sinx,x∈[0,2∏)的图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.【设计意图】由三角函数值的关系,得出正弦函数的整体图象。
把角x(xR)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象
探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变得到余弦函数的图象?
根据诱导公式cosxsin(x),可以把正弦函数y=sinx的图象向左平移
单位即得余弦函数y=cosx的图象.y1-6-5-4-3-2-o-1y1-6-5-4-3-2--123456xy=sinxy=cosx23456x 正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.
【设计意图】通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。思考:在作正弦函数的图象时,应抓住哪些关键点? 【设计意图】通过问题,为下面五点法绘图方法介绍做铺垫 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)((3,-1)(2,0)2,1)(,0)2余弦函数y=cosx x[0,2]的五个点关键是哪几个?(0,1)((3,0)(2,1)2,0)(,-1)2只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图.
3、讲解范例
例1 作下列函数的简图
(1)y=1+sinx,x∈[0,2π],(2)y=-COSx 【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。
探究1. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到
(1)y=1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x-π/3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。探究2.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx,x∈〔0,2π〕的图象? 小结:这两个图像关于X轴对称。探究3. 如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx,x∈〔0,2π〕的图象?
小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。探究4.
不用作图,你能判断函数y=sin(x3π/2)= sin[(x-3π/2)+2 π] =sin(x+π/2)=cosx 这两个函数相等,图象重合。
【设计意图】通过四个探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。
4、小结作业
对本节课所学内容进行小结
【设计意图】在梳理本节课所学的知识点归纳的过程中进一步加深对正弦函数、余弦函数图象认知。培养学生归纳总结的能力,自主构建知识体系。布置分层作业
基础题A题,提高题B题
【设计意图】将课堂延伸,使学生将所学知识与方法再认识和升华,进一步促进学生认知结构内化。注重学生的个体发展,是每个层次的学生都有所进步。
第三篇:正弦函数、余弦函数的图象和性质教案
正弦函数、余弦函数的图象和性质
一、学情分析:
1、学习过指数函数和对数函数;
2、学习过周期函数的定义;
3、学习过正弦函数、余弦函数0,2上的图象。
二、教学目标: 知识目标:
1、正弦函数的性质;
2、余弦函数的性质; 能力目标:
1、能够利用函数图象研究正弦函数、余弦函数的性质;
2、会求简单函数的单调区间; 德育目标:
渗透数形结合思想和类比学习的方法。
三、教学重点
正弦函数、余弦函数的性质
四、教学难点
正弦函数、余弦函数的性质的理解与简单应用
五、教学方法
通过引导学生观察正弦函数、余弦函数的图象,从而发现正弦函数、余弦函数的性质,加深对性质的理解。(启发诱导式)
六、教具准备
多媒体课件
七、教学过程
1、复习导入
(1)我们是从哪个角度入手来研究指数函数和对数函数的?(2)正弦、余弦函数的图象在0,2上是什么样的?
2、讲授新课
(1)正弦函数的图象和性质(由教师讲解)
通过多媒体课件展示出正弦函数在2,2内的图象,利用函数图象探究函数的性质:
ⅰ 定义域
正弦函数的定义域是实数集R ⅱ 值域
从图象上可以看到正弦曲线在1,1这个范围内,所以正弦函数的值域是1,1 ⅲ 单调性
结合正弦函数的周期性和函数图象,研究函数单调性,即:
在2k,2 k (k上是增函数;
Z)
222k
在
,2 k
(k
Z)上是减函数;
223ⅳ 最值
观察正弦函数图象,可以容易发现正弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论:
当
x k
,k
Z 时,y max
1当
x k ,k
时,y min
1
Z22
ⅴ 奇偶性
正弦函数的图象关于原点对称,所以正弦函数的奇函数。ⅵ 周期性
正弦函数的图象呈周期性变化,函数最小正周期为2。(2)余弦函数的图象和性质(由学生分组讨论,得出结论)
通过多媒体课件展示出余弦函数的图象,由学生类比正弦函数的图象及性质进行讨论,探究余弦函数的性质: ⅰ 定义域
余弦函数的定义域是实数集R ⅱ 值域
从图象上可以看到余弦曲线在1,1这个范围内,所以余弦函数的值域是1,1 ⅲ 单调性
结合余弦函数的周期性和函数图象,研究函数单调性,即:
在,2 k (k
2 k
Z)上是增函数;
2 k,2 k
(k
Z)上是减函数;
在ⅳ 最值
观察余弦函数图象,可以容易发现余弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论:
min 当
x
k , k
Z 时,y max
1
当
x
2 k
, k
Z 时,y
1
ⅴ 奇偶性
余弦函数的图象关于y轴对称,所以余弦函数的偶函数。ⅵ 周期性
余弦函数的图象呈周期性变化,函数最小正周期为2。
3、例题讲解:
例:求函数 y
sin()的单调递增区间。
x23分析:采用代换法,利用正弦函数的单调性来求所给函数的单调区间。
1u 的单调递增区间是 解:令 u
x
.函数 y
sin
3[
k ,
2k
Z
k ],222
x 2由k
k ,2321
得:
54kx4k,kZ.33
5x4k,4k(kZ)
)的单调增区间是 所以函数
y
sin(
3323
4、练习:
3求函数 y
sin(x )的单调减区间。
4k8,k8(kZ)
答案:
5、小结:
(1)探究正弦函数、余弦函数的性质的基本思路是什么?(2)求正弦函数、余弦函数的单调区间的基本步骤是怎样的?
6、作业:
习题1.4
第4题、第5题
第四篇:(公开课教案)正弦函数、余弦函数的图象
正弦函数、余弦函数的图象
湖南省泸溪县第一中学 邓德志
一、教材分析
三角函数是基本初等函数之一,它是中学数学的重要内容之一,也是学习高等数学的基础,研究办法主要是代数变形和图象分析,因此三角函数的研究已经初步把几何与代数联系起来了。本章的知识既是解决实际生产问题的工具,又是学习后继内容和高等数学的基础。三角函数是数学中主要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标
知识与技能:1.理解并掌握用正弦线作正弦函数图象的方法;
2.理解并熟练掌握用五点法作正弦函数简图的方法。
过程与方法:通过简谐运动沙摆实验,感知正弦、余弦曲线的形状;学生经历利用正弦线作正弦函数图象的过程,理解并掌握用正弦线作正弦函数图象的方法;通过观察发现确定函数图象形状的关键点。
情感态度与价值观:体会数形结合、化归转化的数学思想。
五、教学重点与难点
教学重点
用单位圆中的正弦线作正弦函数的图象以及五点法画正弦函数的图象。教学难点
用单位圆中的正弦线作正弦函数的图象。
六、教学方法
讲授、启发、诱导发现教学。
七、教
具
多媒体、实物投影仪。
八、教学过程
活动1【导入】引入
借助多媒体课件让学生观察沙摆实验演示,激起学生的兴趣。指出这种形状的曲线就是今天要研究的正、余弦函数的图象。
如何作出该曲线呢?
(以设问和探索的方式导入新课,创设情境,激发思维,让学生带着问题,有目的地参与到课堂活动中)
活动2【导入】描点法作图
1.提出问题:如何画一般函数的图象?
2.学生回答描点法,作图步骤:(Ⅰ)列表;(Ⅱ)描点(Ⅲ)连线。
(描点法在取函数值时,有时不能确定精确值,点的定位不准。如何精确定位呢?)活动3【讲授】几何法作图
1.如何作角α的正弦线、余弦线、正切线?
2.引导学生在单位圆中作出特殊角的三角函数线,并进行平移,作出y = sin x, x∈[0, 2π] 的图象。(这种方法可以实现点的精确定位。画图时,注意讲清:a、把单位圆分成n等份(这里分12份);b、找横坐标;c、找纵坐标;d、连线。)
3.依据诱导公式一,平移图象得出 y = sin x, x∈R的图象,即正弦曲线。活动4【讲授】“五点法”作图.
让学生观察已作出的正弦曲线图象的形状特征,分析讨论,提炼出五个关键点,归纳出“五点法”作图步骤。
观察y = sin x, x∈[0, 2π]的图象,在作图连线过程中起关键作用的是哪几个点? 能否利用这些点作出正弦函数的简图? 关键五点:(0,0),(2,1),(π,0),(32,-1),(2π,0)。
事实上,只要指出这五个点,y = sin x, x∈[0, 2π] 的图象形状就基本定位了。因此在精确度要求不高时,我们就常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图。
(设计意图:通过直观形象的图像,培养学生的观察分析能力,培养学生组建新知识的能力。)要求:
(Ⅰ)掌握正弦曲线的形状;(Ⅱ)注意正弦曲线的弯曲“方向”。活动5【练习】检测训练 画出下列函数的简图:(1)y =sin x + 1 , x∈[0 , 2π ](2)y =sin x-1 , x∈[0 , 2π ] 活动6【讲授】总结巩固
这节课我们主要是学习了作正弦函数图象的两种基本方法:几何法、五点法。几何法利用三角函数线作正弦函数的图象和“五点法”利用五个关键点作正弦函数的简图。用三角函数线作函数的图象虽然精确但比较麻烦,在今后的学习中,我们更多的是用“五点法”,它更实用。
活动7【讲授】课后思考
(1)从图像变换角度,如何利用y = sin x, x∈[0, 2π]的图像,得到y = sin x+1, x∈[0, 2π]的图像?(2)以正弦函数图像为基础,如何得出余弦函数图像?(3)利用正弦函数图像研究正弦函数具有哪些性质?
(设计意图:通过思考,一可以巩固所学知识,二可以为后面学习正弦函数、余弦函数的性质打下良好基础。)
九、作业设计
学业分层测评
(六)。
十、板书设计
正弦函数、余弦函数的图像
1、正弦函数y = sin x, x∈[0, 2π]的图像(1)用描点法画y = sin x, x∈[0, 2π]的图像(2)用几何法画y = sin x, x∈[0, 2π]的图像
2、正弦函数y = sin x, x∈R的图像
3、用“五点法”作正弦函数y = sin x, x∈[0, 2π]的简图
十一、课后反思
第五篇:1.4.1正弦函数,余弦函数的图象教案
§1.4.1正弦函数,余弦函数的图象
【教学目标】
1、知识与技能:
(1)利用单位圆中的三角函数线作出ysinx,xR的图象,明确图象的形状;(2)根据关系cosxsin(x2),作出ycosx,xR的图象;
(3)用“五点法”作出正弦函数、余弦函数的简图。
2、过程与方法
进一步培养合作探究、分析概括,以及抽象思维能力。
3、情感态度价值观
通过作正弦函数和余弦函数图象,培养认真负责,一丝不苟的学习精神。【教学重点难点】
教学重点:“五点法”画长度为一个周期的闭区间上的正弦函数图象 教学难点:运用几何法画正弦函数图象。【教学过程】
1.问题引入,创设情境: 问题1::任意给定一个实数x,对应的正弦值sinx、余弦值cosx是否存在?是否唯一? 问题2:一个函数总具有许多基本性质,要直观、全面了解正、余弦函数的基本特性,我们应从哪个方面入手?图象 视频演示:
“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”
思考: 有什么办法画出该曲线的图象?
2、新课讲解
(1)提出问题:
根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难?
答:列表、描点、连线。由于表中部分值只能取近似值,再加上描点时的误差,部分同学取的点较少,所以画出的图象难免误差大。如何画出更精确的图象呢?(2)探究新知:根据学生的认知水平,正弦曲线的形成分了三个层次:
引导学生画出点(,sin)
33问题一:你是如何得到
32的呢?如何精确描出这个点呢?
问题二:请大家回忆一下三角函数线,看看你是否能有所启发?
电脑演示正弦线、余弦线的定义,同时说明:当角度变化时,对应的线段MP的长度就
是这个角度的正弦值。演示点(,sin)的画法。
33问题三:能否借用画点(3,sin3)的方法,作出y=sinx,x∈[0,2π]的图象呢?
课件演示:正弦函数图象的几何作图法 教师引导:在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆,从圆O1与x轴的交点A起把圆O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O1上的各分点作x轴的垂线,可以得到对应于0、
6、
3、
2、„„、2等角的正弦线,相应地,再把x轴上从0到2这一段分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数ysinx,x0,2的图象
问题四:如何得到ysinx,xR的图象
因为终边相同的角有相同的三角函数值,所以函数ysinx在x2k,2(k1),kZ,k0的图象与函数ysinx,x0,2的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每次2个单位长度),就可以得到正弦函数ysinx,xR的图象,即正弦曲线。问题五:如何作余弦函数ycosx,x0,2的图象?
放手让学生独立思考,自主活动,通过自己的探究得出余弦曲线。实际上,只要学生能够想到正弦函数和余弦函数的内在联系
即 cosxsin(2x)
通过图象变换,由正弦曲线得出余弦曲线的方法是比较容易想到的。
y1-6-5-4-3-2-o-1y1-6-5-4-3-2--123456xy=sinxy=cosx23456x问题六:这个方法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢? 学生活动:请同学们观察,边口答在ysinx,x0,2的图象上,起关键作用的点有几个?引导学生自然得到下面五个:
3(0,0),(,1),(,0),(,1),(2,0)
22组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五点法”作图。
小结作图步骤:
1、列表
2、描点
3、连线
学生活动:试试用五点法画出函数ycosx,x0,2的图象
3、例题分析
例
1、画出下列函数的简图:y=1+sinx,x0,2
y=-cosx,x0,2
4、练习巩固
在同一坐标系内,用五点法分别画出函数 y= sinx,x[0, 2] 和 y= cosx,x[32,2]的简图
5、课堂小结
通过这节课的学习,同学们,你们有什么收获吗?
① 正弦函数图象的几何作图法
② 正弦函数图象的五点作图法(注意五点的选取)
③ 由正弦函数图象平移得到余弦函数的图象
6、布置作业:
画出下列函数的图象简单,并说说他们分别与函数y=sinx, x∈[0,2π] y=cosx,x∈[0,2π]有什么关系?
(1)y=1-sinx x∈[0,2π](2)y=3cosx x∈[0,2π](3)y=cos2x x∈[0,2π]