2017圆柱和圆锥的体积教案.doc

时间:2019-05-12 19:34:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2017圆柱和圆锥的体积教案.doc》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2017圆柱和圆锥的体积教案.doc》。

第一篇:2017圆柱和圆锥的体积教案.doc

圆柱和圆锥的体积

一、本周主要内容

圆柱和圆锥的体积

二、本周学习目标

1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式正确计算圆柱体积或圆柱形容器的容积以及解决简单的实际问题。

2.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积以及解决简单的实际问题。

3.通过圆柱、圆锥体积计算公式的推导、运用的过程,培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力,并体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

三、考点分析

1.圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积)= 底面积 × 高,用含有字母的式子表示是:V = sh 或者V = лr²h。

2.圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱

11体积的三分之一。即V = sh 或者V = лr²h。

33【典型例题】

1、(计算圆柱的体积)一个圆柱,底面周长9.42分米,高20厘米。求它的体积?

分析与解:求圆柱的体积,一般根据V = sh或者 V = лr²h,题中没有给出底面积,又没有给出底面半径,所以要先求出底面半径,同时题目中单位名称不统一,要注意化单位,可以统一为分米,也可以统一为厘米。

20厘米 = 2分米

底面半径:9.42 ÷ 3.14 ÷ 2 = 1.5(分米)

体积: 3.14 × 1.5²× 2 = 14.13(立方分米)

答:它的体积是14.13立方分米。

点评:会使用圆柱体积计算公式是一个基本的要求。但知道圆柱体积计算公式的推导过程也非常重要。体积计算公式的推导过程和之前的圆柱的侧面积计算公式推导过程一样,都用了转化的数学思想。

2、(计算圆柱的容积)一个圆柱形的粮囤,从里面量得底面周长是9.42米,高是2米,每立方米稻谷约重545千克,这个粮囤约装稻谷多少千克?(得

数保留整千克数)。

分析与解:先通过底面周长求出底面半径,再求出底面积,进而求出容积。再去求能装稻谷多少千克。

3.14 ×(9.42÷3.14÷2)² × 2 × 545 = 7700.85 ≈ 7701(千克)

答:这个粮囤约装稻谷7701千克。点评:虽然求容积的方法和求体积的方法相同,但并不意味着体积就是容积。体积的数据是从外面量的,而容积的数据要从里面量。所以一个物体的体积都比其容积要大。

3、(计算和圆柱的体积相关的实际问题)有一个高为6.28分米的圆柱形机件,它的侧面展开正好是一个正方形,求这个机件的体积?

分析与解:圆柱侧面展开是个正方形,说明圆柱的底面周长和高相等。先通过底面周长求出底面积,再求体积。

3.14 ×(6.28÷3.14÷2)² × 6.28 =19.7192(立方分米)

答:这个机件的体积是19.7192立方分米。

点评:圆柱侧面展开之后得到一个长方形,长是圆柱的底面周长,宽是圆柱的高。在这儿展开之后是个正方形,就说明这个圆柱的底面周长和高相等。

4、(综合题)一种抽水机出水管的直径是1分米,管口的水流速度是每秒2米,1分钟能抽水多少立方米?

分析与解:每秒流出来的水的形状,可以看成是一个底面直径1分米,高2米的圆柱,这个圆柱的体积就是1秒种流出的水的体积,再乘60得出1分钟抽水的体积。

1分米 = 0.1米

3.14 ×(0.1÷2)² × 2 = 0.0157(立方米)0.0157 × 60 =0.942(立方米)

答:1分钟能抽水0.942立方米。

5、(综合题)把一根长4米的圆柱形钢材截成两段,表面积比原来增加31.4平方厘米。这根钢材的体积是多少立方厘米?

分析与解:长4米是圆柱的高,要求圆柱的体积还要知道底面积。把圆柱截成两段,增加了两个底面的面积,即增加31.4平方厘米,可以求出圆柱的底面积。

4米 = 400厘米

31.4 ÷ 2 = 15.7(平方厘米)15.7 × 400 = 6280(立方厘米)

答:这根钢材的体积是6280立方厘米。例

6、(计算圆锥的体积)一个圆锥的底面半径是6厘米,高是4厘米,求它的体积。

分析与解:已知圆锥的底面半径、直径、周长时,都要先求出底面积,然后11根据V = sh来计算圆锥的体积。在计算时,千万不要忘记“除以3”或“乘”。

331 × 3.14 ×6 ² × 4 = 150.72(立方厘米)3答:圆锥的体积是150.72立方厘米。

点评:求圆锥的体积不能忘了最后要除以3。如果不除以3,求的就是和这

1个圆锥等底等高的圆柱的体积,而不是圆锥的体积。计算时,可以先算×6 ²

3×4,最后再乘3.14,可以使计算简便,提高正确率。

7、(解决和圆锥体积计算相关的实际问题)一个圆锥形沙堆高1.5米,底面周长是18.84米,每立方米沙约重1.7吨,这堆沙约重多少吨?

分析与解:要求沙堆的质量,先要求沙堆的体积。沙堆是圆锥形,已知它的高和底面周长,根据圆锥体积的计算公式,先求圆锥的底面积。

底面半径:18.84÷3.14÷2 = 3(米)

1体积: × 3.14 ×3 ² × 1.5 = 14.13(立方米)

3沙堆的质量:14.13 × 1.7 = 24.021(吨)

答:这堆沙约重24.021吨。

1例

8、判断:(1)圆锥的体积是圆柱体积的。„„„„()

31(2)如果一个圆锥的体积是一个圆柱体积的,那么它们等底等高。„

3()

1分析与解:(1)一个圆锥的体积是和它等底等高的圆柱体积的,这一结论

3是将它的体积和它等底等高的圆柱进行比较得到的。

11(2)等底等高的圆锥的体积是圆柱体积的;但圆锥的体积是圆柱体积的,33并不意味着它们等底等高。

9、(综合题)一个圆锥的底面半径是3厘米,体积是75.36立方厘米,高是多少厘米?

分析与解:要求圆锥的高,根据圆锥体积计算的公式,可以先用体积乘3,求出和它等底等高的圆柱的体积,再除以底面积,即高 = 体积 × 3 ÷ 底面积,注意不能用圆锥的体积直接除以底面积。也可以根据圆锥体积计算的公式列方程

解答。

方法1:

底面积:3.14 ×3 ² = 28.26(平方厘米)高:75.36 × 3 ÷ 28.26 = 8(厘米)

方法2:设高是ⅹ厘米。1 × 3.14 ×3 ² × ⅹ = 75.36 319.42ⅹ = 75.36 „„ 先算左边的×3.14×3 ²

3ⅹ = 8 答:高是8厘米。

点评:通过体积去求圆锥的高时要注意先用体积乘3,求出与这个圆锥等底等高的圆柱的体积,再除以底面积,求出高;也可以根据圆锥体积计算公式用方程解答。

10、(综合题)把一个棱长为12厘米的正方体木块加工成一个最大的圆锥,圆锥的体积是多少立方厘米?削去的部分是多少立方厘米?

分析与解:将正方体木块加工成一个最大的圆锥,圆锥的底面直径和高都等于正方体的棱长。

正方体的体积:12 × 12 ×12 = 1728(立方厘米)

1圆锥的体积:×3.14 ×(12÷2)² × 12 = 452.16(立方厘米)

3削去部分的体积:1728 – 452.16 = 1275.84(立方厘米)

答:圆锥的体积是452.16立方厘米,削去的部分是1275.84立方厘米。

第二篇:《圆柱、圆锥体积对比练习》教案

圆柱、圆锥体积对比练习

科目: 数学 班级: 五年级下学期数学第4章第9节

教学目标: 1.使学生掌握有关圆柱和圆锥体积的应用。

2.进一步了解圆柱和圆锥体积的关系,熟练运用所学公式计算解答实际问题

教学重难点: 熟练运用所学(圆柱、圆锥)的公式解答实际问题。

教具准备: 多媒体

课件链接: 无

教学过程:

一、回顾旧知。

师:前面我们学习了圆柱和圆锥的体积,你能说说它们的体积应用有哪些吗?

二、运用知识,解决问题。

(一)基本练习。

(运用圆锥体积公式解决实际问题,提高了认知能力)

1.填空:

(1)一个圆柱的底面直径是4厘米,高10厘米,它的侧面积是()平方厘米,体积是()立方厘米。

(2)在平地上挖一个圆柱形的水池,水池深4米,直径是6米。这个水池的占地()平方米,需挖土()立方米。

(3)把一个圆柱的侧面展开,得到一个正方形。这个圆柱的底面半径是2厘米,圆柱的高是()厘米,它的体积师()立方厘米。

2.选择。

(1)等底等高的圆柱、正方体、长方体的体积相比较,()

A正方体体积大 b长方体体积大

c圆柱体积大 d一样大

(2)如果圆柱的高增加2倍,底面积不变,圆柱的体积就()

A扩大2倍 b扩大3倍 c扩大4倍

(3)用一块长28.26厘米,宽15.7厘米的长方体铁皮,配上直径是()厘米的圆形铁皮就可以作成一个容积最大的容器。

A2.5 b4.5 c5 d9

(4)一个圆柱形的水桶可装水200升,这个水桶的()是200升。

A重量(质量)b体积c表面积d容积

(二)提高练习。

1.用铁皮制作圆柱形的通风管100节,每节长24米,底面周长是0.628米。至少需要铁皮多少平方分米?(适当渗透与此相关的滚筒、烟囱、水管、柱子等数学情境。)

2.砌一个圆柱形的水池,底面半径是2.5米,深4米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?水池的容积是多少?

3.一个圆柱形的木头,长6分米。如果沿着与底面平行的方向把它平均锯成3段,表面积比原来增加12.56平方分米。求每段木头的体积是多少?

4.压路机的滚筒是一个圆柱,它的长是3米,滚筒横截面的直径是1米。如果滚筒每分钟转4周,那么压路机每分钟能压路面多少平方米?

(进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。)

三、总结:通过本节课的学习,你有哪些收获?

教学反思:

第三篇:圆柱、圆锥体积的计算

圆柱、圆锥体积的计算 第一课时

教学内容: 青岛版教材五年级下册教科书第三单元信息窗三及自主练习部分题 教学内容: 青岛版教材五年级下册教科书第三单元信息窗 教学目标:

1、使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

2、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:

理解和掌握圆柱的体积计算公式。教学难点:

圆柱体积计算公式的推导。教学策略: 采用直观与演示相结合的方法进行教学。教具学具准备:

圆柱体积演示教具。教学过程:

一、创设情景,提出问题。

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。要求说出解题思路。

2、想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些? 4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

5、出示信息窗3,引导学生提出问题

二、自主探究,学习新知

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。(2)回顾圆面积公式的推导。(切拼转化)(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)

4、学生根据公式自主解决问题。

5、班内交流,教师板书并让学生说说每一步的具体含义,是怎样算的。

三.自主练习,应用拓展。

1、做“自主练习”第1题。指名三人板演,其余学生做在练习本上。集体订正,说说计算时有什么不同的地方,为什么?指出:计算圆柱的体积,要注意题里的条件,正确列出算式计算。

2、做“自主练习”第2题

提问:这道题实际是求什么?怎样做?指名学生板演,其余学生做在练习本上。集体订正,追问用什么公式?

四、全课总结,回顾整理

这节课学习了什么内容?你学到了些什么?指出:求圆柱体积在实际应用中,要注意题里的实际情况,然后计算出结果。

第四篇:圆柱和圆锥的体积练习题

圆柱和圆锥的体积练习题

1.把圆柱切开、再拼起来,能得到一个()。长方体的底面积等于圆柱的(),长方体的高等于圆柱的(),因为长方体的体积=底面积×高,所以圆柱的体积=(),用字母表示是()。2.⑴已知圆柱的底面半径和高,求体积。先用公式()求();再用公式()求()。

⑵已知底面直径和高,求体积。先用公式()求();再用公式()求();最后用公式()求()。⑶已知底面周长和高,求体积。先用公式()求();再用公式()求();最后用公式()求()。3.已知圆柱的体积和底面积,求高,用公式();已知圆柱的体积和高,求底面积,用公式()。

4.当圆柱和圆锥()时,圆锥的体积是圆柱体积的1/3。等底等高的圆柱和圆锥,圆柱体积比圆锥体积大()倍,圆锥体积比圆柱体积小()/()。

5.圆锥的体积计算公式用字母表示是()。已知圆锥的体积和底面积,求高,用公式()。

6.长方体的表面积=(),长方体的体积=();正方体的表面积=(),正方体的体积=()。

7.求一个圆柱形水池的占地面积,是求这个水池的();求一个圆柱形水池能装多少水,是求这个水池的()。

8.把一段圆柱形钢材加工成一个最大圆锥,削去的钢材的体积是24立方厘米,这段圆柱形钢材的体积是()立方厘米,加工成的圆锥的体积是()立方厘米。

9.将一段棱长是20厘米的正方体木材,加工成一个最大的圆柱,削去的木材的体积是()立方厘米。

二、解决问题。1.一个圆柱的底面直径是6厘米,高是 2.一个圆柱的底面周长是25.12分米,10厘米,体积是多少? 高是2分米,体积是多少?

3.一个圆锥的底面半径是5米,高是6

4.一个圆锥的底面周长是18.84分

米,体积是多少?

米,高是12分米,体积是多少?

5.一个圆柱的底面周长是37.68厘米,体 6.一个圆锥形沙堆的体积是47.1 积是565.2立方厘米,高是多少厘米? 立方米,底面直径是6米,?高

是多少米

7.一个圆柱形水池的侧面积是94.2平方米,8.一个圆锥形沙堆,底面直径

底面半径是3米,这个水池能装水多少立 是8米,高 是3米。如果每方米?

立方米沙重1.7吨,这堆沙重

多少吨?(得数保留整数)

9.一个圆柱形油桶,从里面量,底面周长是 10.一个圆锥形麦堆,底面周。62.8厘米,高是30厘米。如果1升柴油重 长是25.12米,高是3米 把这 0.85千克,这个油桶可以装柴油多少千克? 些小麦装入一个底面直径是4

米的圆柱形粮囤 内,正好装满,这个粮囤的高是多少米?

11.一段钢管长60厘米,内直径是8厘米,12.一根圆柱形钢管,长3米,外直径是10厘米。这段钢管的体积是 横截面的外直径是20厘米,管

多少立方厘米? 壁厚2厘米。如果每立方厘米钢

重7.8克,这根钢管重多少千克?

13.一个圆柱形的玻璃杯,底面直径为20厘 14.有一块长方体钢坯,长15.7 米,水深24厘米,当放入一个底面直径是

厘米,宽10厘米,高5厘米,6厘米的圆锥形铁块后,水深24.6厘米。

把它熔铸成一个底面周长是31.4 圆锥形铁块的高是多少厘米?

厘米的圆锥形零件,圆锥形零

件的高是多少厘米?

15.把一根长5分米的圆柱形木料沿着与底面 16.把一根长5分米的圆柱形木料沿底面

平行的方向锯成两段后,表面积增加了200 直径锯成两半后,表面积增加了200 平方分米。这根木料的体积是多少立方分米?

平方分米。这根木料的体积是

第五篇:圆柱和圆锥教案

教学内容:冀教版《数学》六年级下册第22~24页。

教学目标:

1、在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

2、认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

3、积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

课前准备:教师准备一个带商标纸的罐头盒,一个圆柱图,小鼓、卫生纸、小木头段、圆台形物品。学生每人准备一个圆柱体实物。

教学过程:

一、创设情境

1、师:同学们,今天大家都带来了一件物品,谁来给同学们说一说你带的是什么?它的形状是什么?多让几个人交流。学生可能会说:

●我带的是一个茶叶桶,它的形状是圆柱。

●我带的是一个饮料筒,它的形状也是圆柱。

2、师:很好。同学们看着这些物品,都能说出它们的形状是圆柱。那大家想一想,在现实生活中,还有哪些形状是圆柱的物体?

指名发言,只要学生说的对,就给予鼓励,特别是不爱发言的学生。

二、认识圆柱

1、师:看来大家已经知道什么样的物体是圆柱体,现实生活中,有许多物体的形状都是圆柱体,这节课我们就来进一步研究圆柱体。

板书课题:圆柱的认识。

2、师:请大家拿出自己带来的圆柱体,先进行观察,再闭着眼睛摸一摸它的面。学生观察,并用手摸表面。

师:谁能用自己的话说一说摸圆柱表面的感受?(圆柱摸起来像一个柱子。圆柱有上下两个圆,中间的面是弯曲的)

学生说不到,教师可参与交流。

3、师:刚才大家初步感受了圆柱的表面,现在请同学们讨论一下:圆柱有几个面?各有什么特点?(给学生充分观察、讨论的时间)

教师在黑板上画出一个圆柱体。

师:谁来说一说你们讨论的结果?(圆柱有3个面,上下两个面都是圆形,而且两圆的大小相等,还有一个侧面,圆柱的侧面是一个曲面)

学生说不完整,教师参与交流。

4、师:同学们说得很好,圆柱上下两个面叫底面,它们是完全相同的两个圆。(在圆柱图上标出两个底面)

师:圆柱有一个曲面,叫做侧面。(在图上标出“侧面”)圆柱两个底面之间的距离叫做高。(在图上标出高)请同学们拿出自己的圆柱体物品,同桌互相指一指它的两个底面、侧面和高。(同桌合作学习,可让学习稍差的学生在全班指一指)

师:同学们已经知道了圆柱的特征和各部分名称。现在,老师有一个问题:有什么方法可以验证圆柱体上下两个面的大小相等呢?

5、学生可能说到以下方法:

(1)测量底面直径来验证,两个底面直径相等,两个圆大小就一样。

(2)可以用卷尺或线绳测量周长来验证。

(3)可以用圆柱体物体的一个底面描一个圆,用另一个底面比一比,如果重合,就说明两个圆大小一样。

如果方法(3)学生说不到,教师介绍。

6、师:同学们已经认识了圆柱,并且知道了用什么方法验证圆柱上下两个圆的大小相等,课前老师也准备了几件东西,请同学们判断一下,它们的形状是不是圆柱体?

●先拿出圆柱体小木棒,让学生判断,可用直尺测量一下横截面直径。

●再拿卫生纸卷让学生判断。使学生了解,卫生纸卷是一个圆柱体,中间的空心也可以看做一个小圆柱体。

●拿出瓶子让学生判断,使学生了解瓶身是一个圆柱体。

●拿出小鼓让学生判断,使学生了解虽然小鼓上下两个面的大小相等,但它不是一个柱形。

三、圆柱侧面积

1、师:通过刚才的判断,相信同学们对圆柱体有了更深刻的认识。现在,请大家再来观察这个圆柱体罐头盒,它的侧面贴着包装纸,想象一下,如果把包装纸沿着圆柱的一个高剪开,再展开。这张包装纸的形状会是什么形状?

(学生自由发言)

2、师:大家猜想的对不对呢?我们来亲自验证一下吧!现在我们沿着它的一条高剪开,再展开。(把展开的商标纸拿在手上)

3、师:你们看展开的商标纸是什么形状?(长方形)

师:对,侧面展开后是一个长方形。请同学们认真观察,你发现这个长方形的面积和罐头盒侧面积有什么关系?(长方形的面积就等于罐头盒侧面的面积)

师:真聪明。请同学们再观察,并想一想这个长方形纸的长和宽分别与罐头盒的什么有关系?先同桌讨论一下。

学生讨论,教师巡视了解情况。

4、师:谁来说一说你们讨论的结果?

预设;长方形纸的长相当于罐头盒底面的周长,长方形的宽相当于罐头盒的高。

师:有不同意见吗?(征求意见,形成共识)

师:对,长方形的宽就是罐头盒的高,长方形的长相当于罐头盒底面的周长。

边说边在长方形上标出“高”和“底面周长”。

师:我们知道了长方形的面积等于罐头盒侧面的面积,又知道了长方形的长和宽与罐头盒底面周长和高的关系,那应该怎样计算这个罐头盒的侧面积呢?

随学生的回答,教师板书:

圆柱的侧面积=底面周长×高

四、尝试应用

1、师生共同测量出罐头盒的周长和高。

师:现在,咱们就一起量出罐头盒的底面周长和高,并计算一下它的侧面面积。

找两名学生合作,测量出罐头盒的底面周长和高,教师把测量出的数据写在黑板上。

2、师:我们已经知道了罐头盒的底面周长和高,现在自己试着算一算罐头盒的侧面积。

学生独立计算,然后全班交流计算的结果。

五、课堂练习

1、练一练第1题。先让学生读题,并判断用哪张纸比较合适。交流时,重点说一说是怎样判断的。

预设;先观察饮料桶和三张商标纸,饮料桶的高是12厘米,底面直径是8厘米。因为商标纸的长就是饮料桶的底面周长,商标纸的宽就是饮料桶的高。所以先计算出饮料桶的底面周长,再选择。

3.14×8=25.12(厘米)

也就是说商标纸的长应等于25.12厘米,宽应为12厘米,所以选择第3张纸比较合适。

2、练一练第2题。让学生自己计算罐头盒包装纸的面积,然后交流学生的计算方法和结果。学生算完后,请学习稍差的学生交流计算方法和结果。

3.14×12×10=376.8(平方厘米)

3、第3题,用字母给出圆柱的半径或直径和高,求圆柱的侧面积。先让学生独立完成,然后全班订正。

师:谁来说一说你是怎么算的?

答案1:d等于8cm,表示圆柱的直径是8cm,h等于6cm,表示圆柱的高是6cm,根据公式计算。3.14×8×6=150.72(平方厘米)

2:第(2)题,r=3m,表示圆柱的半径是3米,h=1.5m,表示圆柱的高是1.5米,计算圆柱的侧面积:3.14×3×2×1.5=28.26(平方厘米)

教学内容:冀教版《数学》六年级下册第25、26页。

教学目标:

1、经历认识圆柱展开图和探索表面积计算方法的过程。

2、认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。

3、积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。

课前准备:教师准备一个圆柱体纸盒,剪刀,学生准备一个圆柱体茶叶桶。

教学过程:

一、创设情境

师:上节课,我们认识了圆柱,学会了计算圆柱的侧面积。谁来说一说你对圆柱有哪些了解?(给学生充分发言的机会,教师要关注更多的学生)

二、认识表面积

1、师:上节课,我们研究了圆柱的侧面积,这节课我们继续来研究圆柱体的表面积。想一想圆柱的表面包括什么?(两个底面和一个侧面)

师:现在,老师把这个圆柱体纸盒剪开。看一看圆柱的展开图是什么样的。边说边动手操作,照教材上的样子贴在黑板上。

师:观察这个圆柱体展开图,用自己的语言描述一下。

学生可能会说:

(1)圆柱的表面是由上、下两个底面和侧面组成的。

(2)圆柱的表面是由两个同样大的圆和一个侧面组成的。

(3)圆柱的展开图是两个同样大的圆和一个长方形。

2、师:谁来说一说怎样求这个圆柱的表面积?

圆柱的侧面积加上两个底面的面积,就是圆柱的表面积。

教师板书:

圆柱的表面积=侧面积+底面积×2

三、计算表面积

1、师:刚才我们已经知道了怎样计算圆柱的表面积,现在请大家实际计算一个圆柱的表面积。

(出示第25页的示意图)师:观察图,你知道了什么?(这个圆柱的底面半径是5厘米,高是14厘米)

师:你们能计算出这个圆柱的表面积吗?试一试。

学生独立计算,教师巡视了解学生的计算情况。

2、交流学生的计算方法和结果。教师根据学生的汇报随机板书。如果出现列综合算式的给予表扬,如果没有,提出兔博士说的话,鼓励学生尝试,教师进行必要的指导。

学生可能会出现以下方法:

(1)分步解答。先求侧面积,再求一个底面积,最后求圆柱的表面积,列式:

5×2×3.14×14=439.6(平方厘米)

3.14×52=78.5(平方厘米)

439.6+78.5×2=596.6(平方厘米)

(2)先求两个底面面积,再求侧面积,最后求表面积。算式:

3.14×52×2=157(平方厘米)

5×2×3.14×14=39.6(平方厘米)

157+439.6=596.6(平方厘米)

(3)列综合算式:

5×2×3.14×14+3.14×52×2

=439.6+157

=596.6(平方厘米)

四、尝试应用

1、师:同学们真了不起,自己学会了计算这个圆柱体的表面积。下面请同学们拿出自己带来的茶叶桶,同桌合作,测量出有关数据,并计算出它的表面积。

学生合作测量并计算,教师巡视指导。

2、全班交流。师:谁说说你们是怎么做的?计算的结果是多少?

学生可能出现不同测量方法。如:

(1)测量直径和高。

(2)测量底面周长和高。

如果学生出现了综合算式,教师给予肯定,并告诉学生:我们在做题时,不做统一要求,同学们可以选择自己喜欢的方法进行计算。

五、课堂练习

1、“练一练”第1题,师:大家读一读“练一练”的第1题,自己解答。

学生读题、解答,教师巡视指导有困难的学生。

师:谁来说说你是怎么做的?

预设:20÷2=10(厘米)

3.14×102=314(平方厘米)

3.14×20×15=942(平方厘米)

942+314×2=1570(平方厘米)

2、“练一练”第2题。

(1)师:请大家看练一练的第2题,这道题要求的是什么呢?与前面的练习有什么区别?(求的是做这个容器至少需要多少铁皮;不同的是这是一个半圆柱形铁皮容器)

师:求这个半圆柱形容器需要多少铁皮,就是求这个容器的什么?(表面积)

师:这个容器的表面积包括什么?(圆柱体表面积的一半和一个长方形)

师:你们能解决这个问题吗?试一试。

学生在练习本上解答,教师个别指导。

(2)师:谁来说一说你是怎样算的,结果是多少?

学生可能出现的方法:

(1)先求出圆柱表面积的一半。

10÷2=5(厘米)

3.14×52=78.5(平方厘米)

3.14×10×15÷2=235.5(平方厘米)

(2)再求长方形的面积。

10×15=150(平方厘米)

(3)求容器的表面积。

78.5+235.5+150=464(平方厘米)

学生如果出现了其他方法,只要正确,就给予肯定。

3、师:下面请看“练一练”的第3题,自己读一读题。

师:谁来说一说求剩下铅板的面积,应该先算什么,再算什么?最后算什么?

预设:先计算制作这样一个圆柱需要多少铁皮,再求长方形铝板的面积,最后求剩下铝板的面积。

师:请同学们自己解答。

学生算完后全班交流。答案:

(1)圆柱的表面积:

3.14×82=200.96(平方厘米)

3.14×16×16=803.84(平方厘米)

803.84+200.96×2=1205.76(平方厘米)

(2)铅板的面积:

16×2×52=1664(平方厘米)

(3)剩下铅板的面积:

1664-1205.76=458.24(平方厘米)教学目标:

1、经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2、探索并掌握圆柱体积公式,能计算圆柱的体积。

3、在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

教学重点:圆柱体积计算公式的推导过程

教学难点:圆柱体积计算公式的灵活运用

教具准备:圆柱体转化成长方体的模型

教学过程:

一、复习铺垫:

1、请同学们回忆一下什么是物体的体积。

2、(出示幻灯片长方体)这是什么体?怎样计算它的体积?

同样的方法复习正方体。

3、长方体和正方体的体积可以用一个统一的公式来表示是怎样的?

[复习旧知,为后面推导圆柱体积计算公式做铺垫]

二、情境导入:

1、师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?

生:喜欢。

师:为什么?

生:有礼物,还有生日蛋糕。

师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?

生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。

生:亮亮和爷爷的生日蛋糕都是圆柱形的。

师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的知识来说。

生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。

师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。

三、推导、论证:

1、拿出两个不易分辨体积大小的茶叶筒。

师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?

让学生思考和交流。

2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

4、师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:

生:相同点:都可以拼成一个近似的长方体。

不同点:等分的份数越多,就起接近一个长方体。

5、同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?

6、学生汇报讨论结果,同时板书。

生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。

7、根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示V=Sh。

四、实际应用

1、要求圆柱体积,必须知道哪些条件?(生:底面积和高)

2、如果已知底面积和高,你们会求圆柱的体积吗?

出示书中的例题:一根圆柱形的钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?

3、学生读题,特别提示统一单位。学生自主计算后全班交流。

4、反馈练习。P31页练一练1。

练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。

五、家庭作业:

测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?

板书设计:

圆柱的体积

长方体体积 = 底面积 × 高

▏▏ ▏▏ ▏▏

圆柱体体积 = 底面积 × 高

下载2017圆柱和圆锥的体积教案.docword格式文档
下载2017圆柱和圆锥的体积教案.doc.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    圆柱和圆锥教案

    一、创设情境,导入新课。 师:今天老师为大家带来了几样物品,大家看这些物品的形状分别是你所认识的哪些立体图形呢?(长方体、正方体、圆柱、圆锥),今天我们就来认识圆柱和圆锥......

    圆柱和圆锥 教案

    二、圆柱和圆锥 单元教学要求: 1. 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧......

    圆柱和圆锥圆锥的认识以及体积计算(合集)

    圆柱和圆锥 圆锥的认识以及体积计算教学目标:l.认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。 2.理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。 3......

    圆柱体积教案(合集)

    《圆柱的体积》教学设计 教学目标: 1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。 2、经历类比猜想——验证的探索圆柱体积的计算方法......

    圆柱体积教案

    圆柱的体积 教学目标: 1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2.让学生经历观察、猜想、证明等数学活动过程,发展合情推理能......

    圆柱与圆锥教案

    3圆柱与圆锥 【教学目标】 1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。 2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、......

    圆柱和圆锥整理和复习教案

    圆柱和圆锥整理和复习 教学内容:P29页第1-3题,完成练习五。教学目的: 1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区......

    圆柱与圆锥教案

    教 学 设 计 课题 圆柱的认识 教学目标 1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。 2、培养学生细致的观察能......