平行线的判定有关证明试题

时间:2019-05-14 13:48:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平行线的判定有关证明试题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平行线的判定有关证明试题》。

第一篇:平行线的判定有关证明试题

平行线的判定

[例1]若∠1=52°,如图2-18,问应使∠C为多少度时,能使直线AB∥CD?

[例2]如图2-19,若∠1=

∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?

1.如图2-20,∠1=45°,∠

2=135°,则l1∥l2吗?为什么?

2.如图2-21,∠1=120°,∠2=60

°,问直线a与b的关系?

3.在三角形ABC中,∠B=90°,D在AC边上,DF⊥BC于F,DE⊥AB于E,则线段AB与DF平行吗?BC与DE平行吗?为什么?

2.如图1,三条直线交于同一点,则∠1+∠2+∠3=_____.19.已知直线a、b、c两两相交,∠1=2∠3,∠2=40°,求∠4.20.如图16,EF交AD于O,AB

交AD于A,CD交AD于D,∠1=∠2,∠3=∠4,试判AB和CD的位置关系,并说明为什么.*21.如图17,∠ABD= 90

°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?

1.如图1,若∠1=∠2,则_________

∥_________()

图1

若∠3=∠4,则_________∥_________

()

∴DB∥EF()若∠5=∠B,则_________∥_________∴∠1=∠2()()

若∠D+∠DAB=180°,则_________1.已知:如图 2-83,AD∥BC,∠D∥_________()

=100°,AC平分∠BCD,2.如图2,∠1+∠2=180°(已知)求∠DAC的度数.

∠3+∠ 2.已知:如图2-84,∠

AEH=130°,2=180

°∠EFD=50°,∠SMB=120°.

()

求∠DNG的度数.

∴∠1=_________

∴AB∥CD()(6)如图1-3:

①∵∠1=∠2,∴_____∥_____,理由是________________.②∵AB∥DC,∴∠3=∠_______,理由是3.已知:如图 2-85,CD∥AB,OE_________________.平分∠AOD,OF⊥OE,∠D=50°,③∵AD∥______,∴∠5=∠ADC,理由是求∠BOF度数.

__________________.4.已知:如图2-86,AB//CD,∠1= ∠A,∠2=∠C,B、E、D在一条直线上.

三 解答题: 如右图,AB //CD ,AD // BE ,求∠AEC的度数.

试说明

∠ABE=∠D.∵ AB∥CD(已知)

∴ ∠ABE=___________(两直线平行,内错

角相等)1.已知;如图 2-87,DF//AC,∠C∵ AD∥BE(已知)=∠D,∴ ∠D=_________ 求证:∠AMB=∠ENF()∴∠ABE=∠D(等量代换)

1.已知:如图,DE∥GF,BC∥DE,EF∥DC,DC∥AB(图2-81)

求证:∠B=∠F. 2.已知:如图2-88,E、A、F在一条直线上,且EF//BC,求证:∠B+∠C+∠BAC=180° 证明:∵DE∥GF()∴∠F+∠E=180°()∵EF∥DC()

∴∠E+∠D=180°()∴∠F=∠D()3.已知:如图2-89,DC//AB,∠又 ∵BC∥DE,()

ABD+∠A=90°.

∴∠D+∠C=180°()求证:AD⊥DB ∵DC∥AB()

∴∠B+∠C=180°()∴∠B=∠D()∴∠F=∠B()

2.已知:如图2-82,DE∥BC,∠ADE=∠EFC,求证:∠1=∠2

证明:∵ DE∥BC()∴∠ADE=______()∵∠ADE=∠EFC()∴______=______()

第二篇:平行线的性质和判定证明练习题

1.已知如图,∠BMD=∠BAC, ∠1=∠2,EF⊥BC,求证:AD⊥BC

2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:

3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠D

DE⊥AC

4.已知如图, AD⊥BC, EF⊥BC,∠1=∠2,求证:DG∥BA

5.已知如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED

6.已知如图,DB∥FG∥EC, ∠ABD=60°,∠ACE=36°,AP是∠BAC的平分线,求∠PAG的度数

第三篇:初一下平行线判定和性质试题

平行线判定和性质

1.已知如图,指出下列推理中的错误,并加以改正。

(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵AD//BC,∴∠1=∠2(两直线平行,内错角相等)(3)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等)

6.已知如图∠1=∠2,BD平分∠ABC,求证:AB//CD

2.如图,∠1=∠2,∠3=∠4,试向EF是否与GH平行?

3.如图写出能使AB//CD成立的各种题设。

4.已知如图,AB//CD,∠1=∠3,求证:AC//BD。

5.已知如图,AB//CD,AC//BD,求证:∠1=∠3。

7.已知如图,AB//CD,∠1=∠2,求证:BD平分∠ABC。

8.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。

9.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7

三、证明角相等的基本方法 第一章、第二章中已学过的关于两个角相等的命(1)同角(或等角)的余角相等;(2)同角(或等角)的补角相等;

(3)对顶角相等;(4)两直线平行,同位角相等;内错角相等;同旁内角互补。10,如图∠1=∠2=∠C,求证∠B=∠C。

11、已知如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D。

12、已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:∠1=∠2。

四、两条直线位置关系的论证。

两条直线位置关系的论证包括:证明两条直线平行,证明两条直线垂直,证明三点在同一直线上。学过证明两条直线平行的方法有两大类

(一)利用角;

(1)同位角相等,两条直线平行;(2)内错角相等,两条直线平行;(3)同旁内角互补,两条直线平行。

(二)利用直线间位置关系:

(1)平行于同一条直线的两条直线平行;(2)垂直于同一条直线的两条直线平行。

13、如图,已知BE//CF,∠1=∠2,求证:AB//CD。

14、如图CD⊥AB,EF⊥AB,∠1=∠2,求证:DG//BC。

2、已经学过的证明两直线垂直的方法有如下二个:(1)两直线垂直的定义

(2)一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。

(即证明两条直线的夹角等于90o而得到。)

15、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。

五、一题多解。

16、已知如图,∠BED=∠B+∠D。求证:AB//CD。

第四篇:平行线的证明的精选试题

平行线的证明的精选试题

知识梳理:

定理判定平行线性质真命题推论证明应用分类内角和定理三角形证明命题推论(外角)公理假命题反例条件(题设部分)结构结论

一、选择填空题。

二、三、1.已知,如图6-74,在△ABC中,DE∥BC,F是AB上一点,FE的延长线交BC的延长线于点G,求证:∠EGH>∠ADE.2、已知,如图6-76,∠B=32°,∠D=38°,AM、CM分别平分∠BAD、∠BCD,求∠M的度数.你能把它一般化吗?你会证明如下结论吗?AM、CM分别平分∠BAD和∠BCD.求证:∠M=1(∠B+∠D)在探索的活动过程中,体会由特殊到一般的过程.培

2养他们分析、综合、归纳的能力.4、如图所示,在△ABC中,延长CA到E,延长BC到F,D是AB上的一点。

求证:∠ACF∠ADE

E

D

B C5、如图,点D在△ABC的边BC上,连结AD,在线段AD上任取一点E。

求证:∠BEC = ∠ABE+∠ACE+∠BAC

第五篇:七年级下平行线的判定证明练习精选

一.判断题:

1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()

2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。()

3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()

二.填空题:

1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。

2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。

3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。

4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)

∴ AB∥CD()

又∵∠1+∠2 =180(已知)

∴ AB∥EF()

∴ CD∥EF()

三.选择题:

1.如图⑦,∠D=∠EFC,那么()

A.AD∥BCB.AB∥CD

C.EF∥BCD.AD∥EF

2.如图⑧,判定AB∥CE的理由是()

A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE

3.如图⑨,下列推理错误的是()

A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥b

C.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d

4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()

A.①③B.②④C.①③④D.①②③④

四.完成推理,填写推理依据:

1.如图⑩ ∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()

∵AB∥CD,CD∥EF,∴ AB∥_______()

2.如图⑾ 填空:

(1)∵∠2=∠3(已知)

∴ AB__________()

(2)∵∠1=∠A(已知)

∴__________()

(3)∵∠1=∠D(已知)

∴__________()

(4)∵_______=∠F(已知)

∴AC∥DF()

3.填空。如图,∵AC⊥AB,BD⊥AB(已知)

∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______

∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()

∴∠1+∠3=180°

∴_________()

五.证明题

1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

.已知:如图,求证:EC∥DF.,且

.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.

6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

D 图10 F

E B P

Q

D

C

B

A C

7.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

8.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。

下载平行线的判定有关证明试题word格式文档
下载平行线的判定有关证明试题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行线的判定与性质优质试题

    平行线的判定与性质同步练习一、选择题1.下列命题中,不正确的是____A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互......

    平行线的判定与性质试题4

    班级___________________ 姓名_______________ 得分____ 知识点一 同位角相等 两直线平行 1.如图1所示,若∠1=60°,∠2=60°,则AB_______CD. 图1 图2 图3 2.如图2所示,若∠1=∠2,......

    平行线的判定与性质试题3

    (检测时间50分钟 满分100分) • 班级_____________________ 姓名_______________得分_____ 一、选择题:(每小题3分,共15分) 1.在同一平面内,两条不重合直线的位置关系可能......

    平行线的判定说课稿

    5.2.2《平行线的判定(一)》说课稿 (喀什市 东城三中 玛丽亚木古丽.库尔班) 一、教材分析 (一)教学地位和作用 本课位于人教版七年级下册第五章第二节第二小节的第一课时。 本节的......

    讲义:平行线的判定

    全国直营,您值得信赖的专业个性化辅导机构平行线的判定 教学目标 1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。 2、初步学会简单的论证和推理,认识......

    平行线的判定·课堂实录

    “平行线的判定”课堂实录 授课人:李泉 学校:祥云县祥城镇一中 班级:七年级336班 一、教学目标 1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有......

    平行线判定教学反思

    平行线判定教学反思 在课程设计中,我注重了以下几个方面: 1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解......

    平行线的判定说课稿

    课题:七年级下册第五章第二节第二课时《平行线的判定》 说课人:宋婷 (一) 说教材 1、 教材的地位与作用平行线的判定是“平行线”内容的进一步拓展,是为学生进一步学习习近平行线的......