六年级数学应用题30道及答案

时间:2019-05-14 11:33:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级数学应用题30道及答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级数学应用题30道及答案》。

第一篇:六年级数学应用题30道及答案

六年级数学应用题

1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?

3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?

5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?

6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?

7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?

8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?

9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?

10、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?

11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?

12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?

13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2,求二车的速度?

14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?

15、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?

16、两辆车从甲乙两地同时相对开出,4时相遇。慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?

17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。A、B两地的最短距离多少米?最长距离多少米?

18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?

19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?

20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?

21、甲乙两车分别从A,B两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的百分之十,当乙行到全程的5/8时,甲再行全程的1/6可到达B地。求A,B两地相距多少千米?

22、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米。两车相遇时,乙车离中点20千米。两地相距多少千米?

23、甲乙两人分别在A、B两地同时相向而行,与E处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙分别到达B和A后立即折返,仍在E处相遇。已知甲每分钟走60米,乙每分钟走80米,则A和B两地相距多少米?

24、甲乙两列火车同时从AB两地相对开出,相遇时,甲.乙两车未行的路程比为4:5,已知乙车每小时行72千米,甲车行完全程要10小时,问AB两地相距多少千米?

25、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?

26、客货两车同时从甲、乙两地相对开出,途中相遇后继续前进,各到达对方出发地后立即返回,途中第二次相遇,两次相遇地点间相距120千米客车每小时行60千米,货车每小时行48千米,甲乙两地相距多少千米?

27、一辆客车和一辆货车同时从A,B两地相对开出,5小时相遇,相遇后两车又各自继续向前行驶3小时,这时客车离B地还有180千米,货车离A地还有210千米,AB两地相距多少千米?

28、甲乙由AB两地相向出发,甲速是乙速的4/5,甲乙到达B,A地后,向AB相向返回,且甲速提高1/4乙速提高1/3,已知甲乙两次相遇点相距34km,求AB两地间距离?

29、小明5点多起床一看钟,6字恰好在时针和分针的正中间(即两针到6的距离相等),这时是5点几分?

30、一艘游船在长江上航行,从A港口到B港口需航行3小时,回程需要4小时30分钟,请问一只空桶只靠水的流动而漂移,走完同样长的距离,需用几小时?

答案

1.解:AB距离=(4.5×5)/(5/11)=49.5千米

2、解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米

3、解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7 那么4小时就是行全程的4/7 所以乙行一周用的时间=4/(4/7)=7小时

4、解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米

5、解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米

AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇

(225-15)/(1-3/7)=210/(4/7)=367.5千米

6、解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12 那么再有(11/20)/(1/12)=6.6分钟相遇

7、解:路程差=36×2=72千米 速度差=48-36=12千米/小时 乙车需要72/12=6小时追上甲

8、甲在相遇时实际走了36×1/2+1×2=20千米 乙走了36×1/2=18千米 那么甲比乙多走20-18=2千米 那么相遇时用的时间=2/0.5=4小时 所以甲的速度=20/4=5千米/小时 乙的速度=5-0.5=4.5千米/小时

9、解:速度和=60+40=100千米/小时 分两种情况,没有相遇

那么需要时间=(400-100)/100=3小时 已经相遇

那么需要时间=(400+100)/100=5小时

10、解:速度和=9+7=16千米/小时

那么经过(150-6)/16=144/16=9小时相距150千米

11、速度和=42+58=100千米/小时 相遇时间=600/100=6小时 相遇时乙车行了58×6=148千米 或者

甲乙两车的速度比=42:58=21:29 所以相遇时乙车行了600×29/(21+29)=348千米

12、将两车看作一个整体 两车每小时行全程的1/6 4小时行1/6×4=2/3 那么全程=188/(1-2/3)=188×3=564千米

13、解:二车的速度和=600/6=100千米/小时 客车的速度=100/(1+2/3)=100×3/5=60千米/小时 货车速度=100-60=40千米/小时

14、解:速度和=(40-4)/4=9千米/小时 那么还需要4/9小时相遇

15、甲车到达终点时,乙车距离终点40×1=40千米 甲车比乙车多行40千米

那么甲车到达终点用的时间=40/(50-40)=4小时 两地距离=40×5=200千米

16、解:快车和慢车的速度比=1:3/5=5:3 相遇时快车行了全程的5/8 慢车行了全程的3/8 那么全程=80/(5/8-3/8)=320千米

17、解:最短距离是已经相遇,最长距离是还未相遇 速度和=100+120=220米/分 2小时=120分

最短距离=220×120-150=26400-150=26250米 最长距离=220×120+150=26400+150=26550米

18、解:

原来速度=180/4=45千米/小时 实际速度=45+5=50千米/小时 实际用的时间=180/50=3.6小时 提前4-3.6=0.4小时

19、算术法:

相遇后的时间=12×3/7=36/7小时

每小时快12千米,乙多行12×36/7=432/7千米 相遇时甲比乙多行1/7 那么全程=(432/7)/(1/7)=432千米 20、解:乙的速度=52×1.5=78千米/小时 开出325/(52+78)=325/130=2.5相遇

21、解:乙行全程5/8用的时间=(5/8)/(1/10)=25/4小时 AB距离=(80×25/4)/(1-1/6)=500×6/5=600千米

22、解:甲乙速度比=40:45=8:9 甲乙路程比=8:9 相遇时乙行了全程的9/17 那么两地距离=20/(9/17-1/2)=20/(1/34)=680千米

23、解:把全程看作单位1 甲乙的速度比=60:80=3:4 E点的位置距离A是全程的3/7 二次相遇一共是3个全程

乙休息的14分钟,甲走了60×14=840米 乙在第一次相遇之后,走的路程是3/7×2=6/7 那么甲走的路程是6/7×3/4=9/14 实际甲走了4/7×2=8/7 那么乙休息的时候甲走了8/7-9/14=1/2 那么全程=840/(1/2)=1680米

24、解:相遇时未行的路程比为4:5 那么已行的路程比为5:4 时间比等于路程比的反比 甲乙路程比=5:4 时间比为4:5 那么乙行完全程需要10×5/4=12.5小时 那么AB距离=72×12.5=900千米

25、解:甲乙的相遇时的路程比=速度比=4:5 那么相遇时,甲距离目的地还有全程的5/9 所以AB距离=4×2/(5/9)=72/5=14.4千米 26.、解:客车和货车的速度比=60:48=5:4 将全部路程看作单位1 那么第一次的相遇点在距离甲地1×5/(5+4)=5/9处 二次相遇是三个全程

那么第二次相遇点距离乙地1×3×5/9-1=5/3-1=2/3处 也就是距离甲地1-2/3=1/3处

所以甲乙距离=120/(5/9-1/3)=120/(2/9)=540千米

27、解:两车每小时共行全程的1/5 那么3小时行全程的1/5×3=3/5 所以全程=(180+210)/(1-3/5)=390/(2/5)=975千米

28、解:将全部的路程看作单位1 因为时间一样,路程比就是速度比 甲乙路程比=速度比=4:5 乙的速度快,乙到达A点,甲行了1×4/5=4/5 此时乙提速1/3,那么甲乙速度比=4:5×(1+1/3)=3:5 甲走了1-4/5=1/5,那么乙走了(1/5)/(3/5)=1/3 此时甲提速,速度比由3:5变为3(1+1/4):5=3:4 甲乙距离1-1/3=2/3 相遇时乙一共走了1/3+(2/3)×4/(3+4)=1/3+8/21=5/7 也就是距离A地5/7的全程

第一次相遇时的相遇点距离A地4/9全程

那么AB距离=34/(5/7-4/9)=34/(17/63)=126千米

29、解:设此时是5点a分

分针每分钟走1格,那么时针每分钟走5/60=1/12格 根据题意 a-30=5-a/12 13/12a=35 a=420/13分≈32分18秒 此时是5点32分18秒

此处的30和5表示30格和5格,即钟面上的1格 看作特殊的行程问题

30、解:顺流速度1/3,逆水速度=1/4.5=2/9

流水速度=(1/3-2/9)/2=1/18 需要1/(1/18)=18小时

第二篇:小学六年级数学应用题分类(答案及详解)

小学六年级数学应用题分类(答案及详解)

公约公倍问题

需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。

【数量关系】绝大多数要用最大公约数、最小公倍数来解答。

【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。

1、一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?

解:硬纸板的长和宽的最大公约数就是所求的边长。

60和56的最大公约数是4。

答:正方形的边长是4厘米。

2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?

解:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。

答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。

3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?

解:相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。

所以,至少应植树(60+72+96+84)÷12=26(棵)

答:至少要植26棵树。

4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。

解:如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为

60×3+1=181(个)

答:棋子的总数是181个。

行船问题

行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

【数量关系】

(顺水速度+逆水速度)÷2=船速

(顺水速度-逆水速度)÷2=水速

顺水速=船速×2-逆水速=逆水速+水速×逆水速=船速×2-顺水速=顺水速-水速×2

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

解:由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)

船的逆水速为25-15=10(千米)

船逆水行这段路程的时间为320÷10=32(小时)

答:这只船逆水行这段路程需用32小时。

2、甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

解:由题意得甲船速+水速=360÷10=36

甲船速-水速=360÷18=20

可见(36-20)相当于水速的2倍,所以,水速为每小时(36-20)÷2=8(千米)

又因为,乙船速-水速=360÷15,所以,乙船速为360÷15+8=32(千米)

乙船顺水速为32+8=40(千米)

所以,乙船顺水航行360千米需要

360÷40=9(小时)

答:乙船返回原地需要9小时。

3、一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?

解:这道题可以按照流水问题来解答。

(1)两城相距多少千米?

(576-24)×3=1656(千米)

(2)顺风飞回需要多少小时?

1656÷(576+24)=2。76(小时)

列成综合算式[(576-24)×3]÷(576+24)=2.76(小时)

答:飞机顺风飞回需要2.76小时。

工程问题

工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间

工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率)

【解题思路和方法】变通后可以利用上述数量关系的公式。

1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解:题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。

由于甲队独做需10天完成,那么每天完成这项工程的1/10;

乙队单独做需15天完成,每天完成这项工程的1/15;

两队合做,每天可以完成这项工程的(1/10+1/15)。

由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)

答:两队合做需要6天完成。

2、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解:设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

(1)每小时甲比乙多做多少零件?

24÷[1÷(1/6+1/8)]=7(个)

(2)这批零件共有多少个?

7÷(1/6-1/8)=168(个)

答:这批零件共有168个。

解二:上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3

由此可知,甲比乙多完成总工作量的4-3/4+3=1/7

所以,这批零件共有24÷1/7=168(个)例

3、一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解:必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

60÷12=560÷10=660÷15=因此余下的工作量由乙丙合做还需要

(60-5×2)÷(6+4)=5(小时)

答:还需要5小时才能完成。

4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解:注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。

只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

即一个排水管与每个进水管的工作效率相同。由此可知

一池水的总工作量为1×4×5-1×5=15

又因为在2小时内,每个进水管的注水量为1×2,所以,2小时内注满一池水

至少需要多少个进水管?(15+1×2)÷(1×2)=8。5≈9(个)

答:至少需要9个进水管。

正反比例问题

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

1、修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

解:由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)

答:这条公路总长3600米。

2、张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

解:做题效率一定,做题数量与做题时间成正比例关系

设91分钟可以做X应用题则有28∶4=91∶X

28X=91×4X=91×4÷28X=1答:91分钟可以做13道应用题。

3、孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

解:书的页数一定,每天看的页数与需要的天数成反比例关系

设X天可以看完,就有24∶36=X∶15

36X=24×15X=10

答:10天就可以看完。

按比例分配问题

所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

1、学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

解:总份数为47+48+45=140

一班植树560×47/140=188(棵)

二班植树560×48/140=192(棵)

三班植树560×45/140=180(棵)

答:一、二、三班分别植树188棵、192棵、180棵。

2、用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?

解:3+4+5=1260×3/12=15(厘米)

60×4/12=20(厘米)

60×5/12=25(厘米)

答:三角形三条边的长分别是15厘米、20厘米、25厘米。

3、从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解:如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

1/2∶1/3∶1/9=9∶6∶2

9+6+2=1717×9/17=9

17×6/17=617×2/17=2

答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

方阵问题

将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

【数量关系】

(1)方阵每边人数与四周人数的关系:

四周人数=(每边人数-1)×每边人数=四周人数÷4+(2)方阵总人数的求法:

实心方阵:总人数=每边人数×每边人数

空心方阵:总人数=(外边人数)?-(内边人数)?

内边人数=外边人数-层数×2

(3)若将空心方阵分成四个相等的矩形计算,则:

总人数=(每边人数-层数)×层数×4

【解题思路和方法】方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

1、在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

解:22×22=484(人)

答:参加体操表演的同学一共有484人。

2、有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

解:10-(10-3×2)=84(人)

答:全方阵84人。

3、有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?

解:(1)中空方阵外层每边人数=52÷4+1=14(人)

(2)中空方阵内层每边人数=28÷4-1=6(人)

(3)中空方阵的总人数=14×14-6×6=160(人)

答:这队学生共160人。

4、一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

解:(1)纵横方向各增加一层所需棋子数=4+9=13(只)

(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)

(3)原有棋子数=7×7-9=40(只)

答:棋子有40只。

5、有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?

解:第一种方法:1+2+3+4+5=15(棵)

第二种方法:(5+1)×5÷2=15(棵)

答:这个三角形树林一共有15棵树。

追及问题

两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

【数量关系】

追及时间=追及路程÷(快速-慢速)

追及路程=(快速-慢速)×追及时间

【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

1、好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

解:(1)劣马先走12天能走多少千米?75×12=900(千米)

(2)好马几天追上劣马?900÷(120-75)=20(天)

列成综合算式75×12÷(120-75)=900÷45=20(天)

答:好马20天能追上劣马。

2、小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)

答:小亮的速度是每秒3米。

3、我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

解:敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知

追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)

答:解放军在11小时后可以追上敌人。

4、一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

解:这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)

所以两站间的距离为(48+40)×4=352(千米)

列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)

答:甲乙两站的距离是352千米。

5、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?

解:要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)

家离学校的距离为90×12-180=900(米)

答:家离学校有900米远。

6、孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。

解:手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。

如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。

所以步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟)

跑步1千米所用时间为15-[9-(10-5)]=11(分钟)

跑步速度为每小时1÷11/60=5.5(千米)

答:孙亮跑步速度为每小时5.5千米。

倍比问题

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】

总量÷一个数量=倍数

另一个数量×倍数=另一总量

【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

解:(1)3700千克是100千克的多少倍?3700÷100=37(倍)

(2)可以榨油多少千克?40×37=1480(千克)

列成综合算式40×(3700÷100)=1480(千克)

答:可以榨油1480千克。

2、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

解:(1)48000名是300名的多少倍?48000÷300=160(倍)

(2)共植树多少棵?400×160=64000(棵)

列成综合算式400×(48000÷300)=64000(棵)

答:全县48000名师生共植树64000棵。

3、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?

解:(1)800亩是4亩的几倍?800÷4=200(倍)

(2)800亩收入多少元?11111×200=2222200(元)

(3)16000亩是800亩的几倍?16000÷800=20(倍)

(4)16000亩收入多少元?2222200×20=44444000(元)

答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

溶液浓度问题

在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。

【数量关系】

溶液=溶剂+溶质

浓度=溶质÷溶液×100%

【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

1、爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?

解:(1)需要加水多少克?50×16%÷10%-50=30(克)

(2)需要加糖多少克?50×(1-16%)÷(1-30%)-50=10(克)

答:(1)需要加水30克,(2)需要加糖10克。

2、要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?

解:假设全用30%的糖水溶液,那么含糖量就会多出

600×(30%-25%)=30(克)

这是因为30%的糖水多用了。

于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。

这样,每“换掉”100克,就会减少糖100×(30%-15%)=15(克)所以需要“换掉”30%的溶液(即“换上”15%的溶液)100×(30÷15)=200(克)

由此可知,需要15%的溶液200克。

需要30%的溶液600-200=400(克)

答:需要15%的糖水溶液200克,需要30%的糖水400克。

最值问题

科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。

【数量关系】一般是求最大值或最小值。

【解题思路和方法】按照题目的要求,求出最大值或最小值。

1、在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?

解:先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。

答:最少需要9分钟。

2、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?

解:我们采用尝试比较的方法来解答。

集中到1号场总费用为1×200×10+1×400×40=18000(元)

集中到2号场总费用为1×100×10+1×400×30=13000(元)

集中到3号场总费用为1×100×20+1×200×10+1×400×10=12000(元)

集中到4号场总费用为1×100×30+1×200×20+1×400×10=11000(元)

集中到5号场总费用为1×100×40+1×200×30=10000(元)

经过比较,显然,集中到5号煤场费用最少。

答:集中到5号煤场费用最少。

时钟问题

时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。

时钟问题可与追及问题相类比。

【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。

通常按追及问题来对待,也可以按差倍问题来计算。

【解题思路和方法】变通为“追及问题”后可以直接利用公式。

1、从时针指向4点开始,再经过多少分钟时针正好与分针重合?

解:钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。

每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。

所以分针追上时针的时间为20÷(1-1/12)≈22(分)

答:再经过22分钟时针正好与分针重合。

2、四点和五点之间,时针和分针在什么时候成直角?

解:钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。

四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。

再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。

(5×4-15)÷(1-1/12)≈6(分)

(5×4+15)÷(1-1/12)≈38(分)

答:4点06分及4点38分时两针成直角。

3、六点与七点之间什么时候时针与分针重合?

解:六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。

(5×6)÷(1-1/12)≈33(分)

答:6点33分的时候分针与时针重合。

列车问题

这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

【数量关系】

火车过桥:过桥时间=(车长+桥长)÷车速

火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)

火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

1、一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

解:火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米?900×3=2700(米)

(2)这列火车长多少米?2700-2400=300(米)

列成综合算式900×3-2400=300(米)

答:这列火车长300米。

2、一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

解:火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)答:大桥的长度是800米。

3、一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

解从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为(225+140)÷(22-17)=73(秒)

答:需要73秒。

4、一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

解:如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。

150÷(22+3)=6(秒)

答:火车从工人身旁驶过需要6秒钟。

5、一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?

解:车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,因此,火车的车速为每秒(2000-1250)÷(88-58)=25(米)

进而可知,车长和桥长的和为(25×58)米,因此,车长为25×58-1250=200(米)

答:这列火车的车速是每秒25米,车身长200米。

年龄问题

这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

1、爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?

解:35÷5=7(倍)

(35+1)÷(5+1)=6(倍)

答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。

2、母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

解:(1)母亲比女儿的年龄大多少岁?37-7=30(岁)

(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)

列成综合算式(37-7)÷(4-1)-7=3(年)

答:3年后母亲的年龄是女儿的4倍。

例3、3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?

解:今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为49+3×2=55(岁)

把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为55÷(4+1)=11(岁)

今年父亲年龄为11×4=44(岁)

答:今年父亲年龄是44岁,儿子年龄是11岁。

构图布数问题

这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。

【数量关系】根据不同题目的要求而定。

【解题思路和方法】通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。

1、十棵树苗子,要栽五行子,每行四棵子,请你想法子。

解:符合题目要求的图形应是一个五角星。

4×5÷2=10

因为五角星的5条边交叉重复,应减去一半。

2、九棵树苗子,要栽十行子,每行三棵子,请你想法子。

解:符合题目要求的图形是两个倒立交叉的等腰三角形,一个三角形的顶点在另一个三角形底边的中线上。

3、九棵树苗子,要栽三行子,每行四棵子,请你想法子。

解:符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。

4×3-3=9

4、把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。

解:共有五种写法,即12=1+4+712=1+5+612=2+3+712=2+4+612=3+4+5

在这五个算式中,4出现三次,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。

据此,我们可以设计出三种图形。

第三篇:六年级数学应用题(答案附后)

六年级数学应用题大全

六年级数学应用题1

一、分数的应用题

1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?

4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?

7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?

9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

六年级数学应用题2

二、比的应用题

1、一个长方形的周长是24厘米,长与宽的比是 2:1,这个长方形的面积是多少平方厘米?

2、一个长方体棱长总和为 96 厘米,长、宽、高的比是 3∶2 ∶1,这个长方体的体积是多少?

3、一个长方体棱长总和为 96 厘米,高为4厘米,长与宽的比是 3 ∶2,这个长方体的体积是多少?

4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?

5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?

6、做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?

7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?

8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

六年级数学应用题3

三、百分数的应用题

1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年产值是多少万元?

2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱?

3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?

4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?

5、服装店同时卖出了两件衣服,每件衣服各得120元,但其中一件赚成本的20%,另一件赔了成本的20%,问服装店卖出的两件衣服是赚钱了还是亏本了?

6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?

7、比5分之2吨少20%是()吨,()吨的30%是60吨。

8、一本200页的书,读了20%,还剩下()页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是()。

9、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?

10、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?(补充:利息税为20%)

11、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?

12、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。

六年级数学应用题4

四、圆的应用题

1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?

3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?

8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?

9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?

六年级数学应用题5

1、救生员和游客一共有56人,每个橡皮艇上有1名救生员和7名游客。一共有多少名游客?多少名救生员?

2、王伯伯家里的菜地一共有800平方米,准备用2/5种西红柿。剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?

3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?

4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。这个三角形三条边各是多少厘米?

5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?

6、修路队要修一条长432米的公路,已经修好了全长的1/4,剩余的任务按5︰4分给甲、乙两个修路队。两个修路队各要修多少米?

7、在“学雷锋”活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。

五、六年级同学各做好事多少件?

8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?

9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?

10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)

11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?

12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?

13、一个圆形牛栏的半径是15米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?

14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?

15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?

17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张?

18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?

19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?

20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。

六年级数学应用题6

1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?

2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?

3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?

4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?

5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?

6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?

7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?

8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?

9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?

10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?

11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?

12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?

13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?

14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3,两周共修了多少千米?

15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是全长的1/2?

16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?

17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?

18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?

19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?

20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?

六年级数学应用题7

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?

2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?

3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的2/3。运来面粉多少吨?

4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?

5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?

6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?

7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?

8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?

9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?

10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?

11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是 3:2。求大桶里原来装有多少千克油?

12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?

13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?

14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米? 15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?

16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?

17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?

18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?

19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?

20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?

六年级数学应用题8

1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?

2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?

3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?

4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?

5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?

6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?

7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?

8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7千米,求这条公路的长?

9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?

10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?

11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?

12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?

13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?

14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?

15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?

16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?

17、牧场养牛480头,比去年养的多1/5,比去年多多少头?

18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?

19、打扫多功能教室,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?

20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?

六年级数学应用题9

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

5、一种电脑原价6800元,现降价1700元,降价百分之几?

6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?

12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

14、在100克水中,加入25克盐。这盐水的含盐率是多少?

15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?(按利息税税率20%)

18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

六年级数学应用题10

1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?

2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?

3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?

4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?

5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?

6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?

7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?

8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的? 9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?

10、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?

11、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?

12、一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?

13、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

14、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?(多考虑几种计算方法)

15、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?

16、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?

17、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?

18、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?

六年级数数应用题(答案)

1、这缸水有25桶

2、这根钢管还剩2米

3、这条公路全长99千米

4、这批零件有49个

5、两次共取出21袋

6、两车经过9小时相遇

7、一条裤子240元

8、白兔有72只

9、两天共挖了60米,还剩下20米

(二)比的应用题

1、这个长方形的面积是32平方厘米

2、这个长方体的体积是384立方厘米

3、这个长方体的体积是384立方厘米

4、男生有24人

5、原来两筐水果共有62千克

6、红糖需要200克,豆需要100克

7、这本书共有270页

8、这三个内角的度数分别是40、60、80度

(三)百分数的应用题

1、今年产值是3000万元

2、这时有苹果440箱(原来有苹果400箱)

3、原价是822.40元

4、存的本金是19488.81元

5、卖出这两件衣服赔了10元钱 6、3年前女儿年龄是爸爸的20% 7、0.32吨;200吨

8、还剩下160页;乙数是96

9、上半月用水6750吨

10、第一种方法得到的税后利息多一些(19.44元;18.16元)

11、所交利息税为22.5元

12、需要这样的小麦16吨

(四)圆的应用题

1、这个圆的直径4厘米,半径2厘米,面积12.56

平方厘米

2、这块草坪的面积是706.5平方米;要摆60盆花

(周长94.2米)

3、这个扇形面积是3平方厘米

4、前轮周长1.8米

5、这条小路面积是75.36平方米

6、水泥路面的面积是640.56平方米

7、圆环的宽度是5厘米

8、这根分针尖端所走过的路程是94.2厘米(分针走一圈是60分钟,45分钟所走的路程为钟面圆周长的四分之三)

9、时针尖端走一天扫过的长度是3.77米,扫过的面积是0.56平方米

(五)应用题

1、一共有7名救生员,49名游客

2、西红柿320平方米,黄瓜320平方米,茄子160平方米

3、这个长方形的长是10米,宽4米

4、这三条边的长度是21、28、35厘米

5、这个三角形中最大的角是90度,这是一个直角三角形

6、甲队要修180米,乙队要修144米

7、五年级同学做60件,六年级同学做100件

8、货车每小时行40千米,客车每小时行50千米

9、它的半径是45厘米

10、底面积是0.2平方米

11、大约需要20分钟

12、分钟尖端所走的路程是62.8厘米

13、需要282.6米长的铁丝;大约要装47根木桩

14、能喷灌314平方米范围

15、草坪面积是1884平方米

16、这条小路的面积34.54平方米

17、买了5角邮票7张、8角邮票9张

18、女院士占6%

19、乙队挖了3天

20、这个数是52(设这个数各位上的数字是x,则十位上的数字是7-x,则可列出方程式)

(六)应用题

1、一共用去9/20米

2、绵羊有43只

3、再看60页

4、再用去1/10千克

5、第二天吃去30千克 6、4次可运去1/2,已经运走了58吨

7、计划比九月份节约4吨

8、面积432平方米

9、大约含水4千克

10、女生植树125棵

11、三年级64人

12、两车相距175千米

13、一共植树288棵

14、两周共修了22/15千米

15、再修3/8千米

16、两天共看了36页

17、第三天从第26页开始看

18、运来黄沙3/8吨

19、小伟捐了14元

20、今年计划增产800万台

(七)应用题

1、再挖750米

2、六年级采集5/9千克

3、运来面粉是300吨

4、乙筐苹果有7/10千克

5、这桶油原来有54千克

6、甲队比乙队多修40米

7、全厂有工人252人

8、苹果有600000千克(60吨)

9、原来的甲是72

10、小芳原有21件

11、大桶里原来有17千克油

12、这个长方体的体积是1536立方厘米

13、小红给小明40张邮票

14、王华家离学校1千米

15、平均每台织布机每小时织布16米

16、可以走7.5千米

17、这个三角形铁片高4/5米

18、运来梨20筐,苹果30筐

19、这个直角三角形的面积是24平方厘米,它的斜边长10厘米

20、这个长方形的面积是147平方米

(八)应用题

1、甲乙两地相距1500米

2、实际投资24万元

3、实际生产2200台

4、这根电线还剩24.625米

5、这本书原价比现价高

6、第三天看了55页

7、九月份用水81吨

8、这条公路长23.8千米

9、五爱小学有50台电脑

10、五爱小学有75台电脑

11、这袋大米15千克

12、这本书共有300页

13、小白兔和小灰兔共有96只

14、全天捕鱼2600千克

15、这桶油有50千克

16、这条路长360米

17、比去年多80头

18、合打这份材料的1/2需要15/16小时

19、甲乙组合作需要1/7小时打扫完整个教室

20、甲完成任务时实际做了6天(总共用了10天,减去甲中途离开的4天)

(九)应用题

1、三人同时加工需要8天

2、还可以买3块橡皮(12支铅笔=4块橡皮,说明1块橡皮=3支铅笔)

3、这批零件共有144个

4、超额完成了20%

5、降价25%

6、甲速度是乙速度的75%

7、实际工作效率比计划提高了25%

8、乙堆煤的重量比甲堆煤少40%

9、六(2)班有57人

10、分两种情况回答(即销售利润率和成本利润率):

①如果是相对于价格的25%:则利润为100×25%=25,所以成本应该是100-25=75

卖120元时,利润为120-75=45,所以此时的销售利润率为45÷120=37.5% ②如果是相对于成本的25%:设成本为X,则(100-X)÷X=25%,解得X=80,所以成本为80,当售价为120时,利润为120-80=40,所以成本利润率为40/80=50%

11、篮球有44个

12、这堆沙子有160吨

13、小麦的出粉率是65%

14、这盐水的含盐率是20%

15、至少需要303千克菜籽

16、合格率98%;700个中不合格的有14个

17、可得税后利息96元;可取回本金和利息一共5096

18、王老师每月税后工资1437.5元

19、这种篮球现价每只135元,每只便宜了45元

20、去年比前年的玉米增产了2成

(十)应用题

1、这个计算器原价80元

2、去年收稻谷2600千克

3、亏了6元(该商品成本价24元);如果想盈利

25%,应按30元出售

4、加入6千克盐

5、该商品打85折出售

6、这个保险公司有男职工40人

7、这条公路全长2000米

8、这套服装是打9折出售的

9、需要蒸发掉760千克水

10、这个鱼塘面积7850平方米

11、至少需要薄膜314平方米,需要花157元

12、大约5.5千米

13、还要10天才能修完这条水渠

14、六年级一共有300人

15、科技小组有32人

16、这批化肥共有60吨

17、这块菜地面积是64平方米

18、这时火车行驶了70千米

第四篇:六年级数学应用题(答案附后)

六年级数学应用题大全

一、分数的应用题

1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?

4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?

7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只

9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

二、比的应用题

1、一个长方形的周长是24厘米,长与宽的比是 2:1,这个长方形的面积是多少平方厘米?

2、一个长方体棱长总和为 96 厘米,长、宽、高的比是 3∶2 ∶1,这个长方体的体积是多少?

3、一个长方体棱长总和为 96 厘米,高为4厘米,长与宽的比是 3 ∶2,这个长方体的体积是多少?

4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?

5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?

6、做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?

7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?

8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

三、百分数的应用题

1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年产值是多少万元?

2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱?

3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?

4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?

5、服装店同时卖出了两件衣服,每件衣服各得120元,但其中一件赚成本的20%,另一件赔了成本的20%,问服装店卖出的两件衣服是赚钱了还是亏本了?

6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?

7、比5分之2吨少20%是()吨,()吨的30%是60吨。

8、一本200页的书,读了20%,还剩下()页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是()。

9、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?

10、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?(补充:利息税为20%)

11、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?

12、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。

四、圆的应用题

1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?

3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?

8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?

9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?

1、救生员和游客一共有56人,每个橡皮艇上有1名救生员和7名游客。一共有多少名游客?多少名救生员

2、王伯伯家里的菜地一共有800平方米,准备用2/5种西红柿。剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米

3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?

4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。这个三角形三条边各是多少厘米?

5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?

6、修路队要修一条长432米的公路,已经修好了全长的1/4,剩余的任务按5︰4分给甲、乙两个修路队。两个修路队各要修多少米?

7、在“学雷锋”活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。

五、六年级同学各做好事多少件?

8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?

9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?

10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)

11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?

12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?

13、一个圆形牛栏的半径是15米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?

14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?

15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?

17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张? 18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?

19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?

20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。

1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?

2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?

3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?

4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?

5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?

6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?

7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?

8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?

9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?

10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?

11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?

12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?

13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?

14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3,两周共修了多少千米?

15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是全长的1/2?

16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?

17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?

18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?

19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元? 20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?

2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?

3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的2/3。运来面粉多少吨?

4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?

5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?

6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?

7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?

8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?

9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?

10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?

11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是 3:2。求大桶里原来装有多少千克油?

12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?

13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?

14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米? 15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?

16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?

17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?

18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?

19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?

20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?

1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?

2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?

3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?

4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?

5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?

6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?

7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?

8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7千米,求这条公路的长?

9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?

10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?

11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?

12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?

13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?

14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?

15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?

16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?

17、牧场养牛480头,比去年养的多1/5,比去年多多少头?

18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?

19、打扫多功能教室,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?

20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

5、一种电脑原价6800元,现降价1700元,降价百分之几?

6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?

12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

14、在100克水中,加入25克盐。这盐水的含盐率是多少?

15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?(按利息税税率20%)

18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?

2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?

3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?

4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?

5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?

6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?

7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?

8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的? 9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?

10、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?

11、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?

12、一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?

13、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

14、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?(多考虑几种计算方法)

15、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?

16、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?

17、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?

18、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?

六年级数学应用题答案

(一)分数应用题

1、这缸水有25桶

2、这根钢管还剩2米

3、这条公路全长99千米

4、这批零件有49个

5、两次共取出21袋

6、两车经过9小时相遇

7、一条裤子240元

8、白兔有72只

9、两天共挖了60米,还剩下20米

(二)比的应用题

1、这个长方形的面积是32平方厘米

2、这个长方体的体积是384立方厘米

3、这个长方体的体积是384立方厘米

4、男生有24人

5、原来两筐水果共有62千克

6、红糖需要200克,豆需要100克

7、这本书共有270页

8、这三个内角的度数分别是40、60、80度

(三)百分数的应用题

1、今年产值是3000万元

2、这时有苹果440箱(原来有苹果400箱)

3、原价是822.40元

4、存的本金是19488.81元

5、卖出这两件衣服赔了10元钱 6、3年前女儿年龄是爸爸的20% 7、0.32吨;200吨

8、还剩下160页;乙数是96

9、上半月用水6750吨

10、第一种方法得到的税后利息多一些(19.44元;18.16元)

11、所交利息税为22.5元

12、需要这样的小麦16吨

(四)圆的应用题

1、这个圆的直径4厘米,半径2厘米,面积12.56平方厘米

2、这块草坪的面积是706.5平方米;要摆60盆花(周长94.2米)

3、这个扇形面积是3平方厘米

4、前轮周长1.8米

5、这条小路面积是75.36平方米

6、水泥路面的面积是640.56平方米

7、圆环的宽度是5厘米

8、这根分针尖端所走过的路程是94.2厘米(分针走一圈是60分钟,45分钟所走的路程为钟面圆周长的四分之三)

9、时针尖端走一天扫过的长度是3.77米,扫过的面积是0.56平方米

(五)应用题

1、一共有7名救生员,49名游客

2、西红柿320平方米,黄瓜320平方米,茄子160平方米

3、这个长方形的长是10米,宽4米

4、这三条边的长度是21、28、35厘米

5、这个三角形中最大的角是90度,这是一个直角三角形

6、甲队要修180米,乙队要修144米

7、五年级同学做60件,六年级同学做100件

8、货车每小时行40千米,客车每小时行50千米

9、它的半径是45厘米

10、底面积是0.2平方米

11、大约需要20分钟

12、分钟尖端所走的路程是62.8厘米

13、需要282.6米长的铁丝;大约要装47根木桩

14、能喷灌314平方米范围

15、草坪面积是1884平方米

16、这条小路的面积34.54平方米

17、买了5角邮票7张、8角邮票9张

18、女院士占6%

19、乙队挖了3天

20、这个数是52(设这个数各位上的数字是x,则十位上的数字是7-x,则可列出方程式)

(六)应用题

1、一共用去9/20米

2、绵羊有43只

3、再看60页

4、再用去1/10千克

5、第二天吃去30千克 6、4次可运去1/2,已经运走了58吨

7、计划比九月份节约4吨

8、面积432平方米

9、大约含水4千克

10、女生植树125棵

11、三年级64人

12、两车相距175千米

13、一共植树288棵

14、两周共修了22/15千米

15、再修3/8千米

16、两天共看了36页

17、第三天从第26页开始看

18、运来黄沙3/8吨

19、小伟捐了14元

20、今年计划增产800万台

(七)应用题

1、再挖750米

2、六年级采集5/9千克

3、运来面粉是300吨

4、乙筐苹果有7/10千克

5、这桶油原来有54千克

6、甲队比乙队多修40米

7、全厂有工人252人

8、苹果有600000千克(60吨)

9、原来的甲是72

10、小芳原有21件

11、大桶里原来有17千克油

12、这个长方体的体积是1536立方厘米

13、小红给小明40张邮票

14、王华家离学校1千米

15、平均每台织布机每小时织布16米

16、可以走7.5千米

17、这个三角形铁片高4/5米

18、运来梨20筐,苹果30筐

19、这个直角三角形的面积是24平方厘米,它的斜边长10厘米 20、这个长方形的面积是147平方米

(八)应用题

1、甲乙两地相距1500米

2、实际投资24万元

3、实际生产2200台

4、这根电线还剩24.625米

5、这本书原价比现价高

6、第三天看了55页

7、九月份用水81吨

8、这条公路长23.8千米

9、五爱小学有50台电脑

10、五爱小学有75台电脑

11、这袋大米15千克

12、这本书共有300页

13、小白兔和小灰兔共有96只

14、全天捕鱼2600千克

15、这桶油有50千克

16、这条路长360米

17、比去年多80头

18、合打这份材料的1/2需要15/16小时

19、甲乙组合作需要1/7小时打扫完整个教室

20、甲完成任务时实际做了6天(总共用了10天,减去甲中途离开的4天)

(九)应用题

1、三人同时加工需要8天

2、还可以买3块橡皮(12支铅笔=4块橡皮,说明1块橡皮=3支铅笔)

3、这批零件共有144个

4、超额完成了20%

5、降价25%

6、甲速度是乙速度的75%

7、实际工作效率比计划提高了25%

8、乙堆煤的重量比甲堆煤少40%

9、六(2)班有57人

10、分两种情况回答(即销售利润率和成本利润率):

①如果是相对于价格的25%:则利润为100×25%=25,所以成本应该是100-25=75

卖120元时,利润为120-75=45,所以此时的销售利润率为45÷120=37.5% ②如果是相对于成本的25%:设成本为X,则(100-X)÷X=25%,解得X=80,所以成本为80,当售价为120时,利润为120-80=40,所以成本利润率为40/80=50%

11、篮球有44个

12、这堆沙子有160吨

13、小麦的出粉率是65%

14、这盐水的含盐率是20%

15、至少需要303千克菜籽

16、合格率98%;700个中不合格的有14个

17、可得税后利息96元;可取回本金和利息一共5096元

18、王老师每月税后工资1437.5元

19、这种篮球现价每只135元,每只便宜了45元 20、去年比前年的玉米增产了2成

(十)应用题

1、这个计算器原价80元

2、去年收稻谷2600千克

3、亏了6元(该商品成本价24元);如果想盈利25%,应按30元出售

4、加入6千克盐

5、该商品打85折出售

6、这个保险公司有男职工40人

7、这条公路全长2000米

8、这套服装是打9折出售的

9、需要蒸发掉760千克水

10、这个鱼塘面积7850平方米

11、至少需要薄膜314平方米,需要花157元

12、大约5.5千米

13、还要10天才能修完这条水渠

14、六年级一共有300人

15、科技小组有32人

16、这批化肥共有60吨

17、这块菜地面积是64平方米

18、这时火车行驶了70千米

(未经复核,个别答案可能有误。12)

第五篇:六年级上册应用题试题及答案

蜗牛爬树问题

例题1:一只青蛙在深为5米的井里面,它想跳上井来,已知青蛙每次可以跳上来2米,但由于井壁很滑,他每次跳完后要滑下去1米,问青蛙要跳几次才能跳出这口井?

分析:青蛙每跳一次跳上来2米,又滑下去1米,相当于实际跳上去了1米。但是要注意最后一次例外,它跳上去2米,已经到了井口,不会再滑下去了。

(1)除了最后一次可以跳2米,则青蛙还需跳— 2= 3(米)

(2)青蛙每次可以实际跳1米,则3米需要跳

3÷(2—1)=3(次)

(3)加上最后一次,则青蛙跳上井要+ 1= 4(次)

答:青蛙要跳4次才能跳上这口井。

练习:

1、青蛙跳井,青蛙在一口深度为11米的井的井底,它沿着井壁往上跳,已知它每次可以跳上去3米,但由于井壁太滑,它跳完后要下滑1米,问青蛙要多少次才能跳上这口井?

2、蜗牛爬树,蜗牛要爬上一17米高的大树,已知蜗牛白天向上爬3米,晚上因为睡觉会滑下来1米,问蜗牛要爬多少天才能爬到树顶?

渡船问题

例题2:9只小猪要渡过一条小河区对岸,它们找来一只能载3只猪的木筏,至少需要几次才能全部渡过河去?

分析:根据生活经验,小木筏过河后必须有1只小猪划船回来。除了最后一次,其它每次都只渡过去了(3—1)只。

除了最后一次其它次数渡过去了:9 — 3= 6(只)

这6只要 6 ÷(3—1)=3(次)

加上最后那一次这共需要:3 + 1 = 4(次)

例题3:四个人甲,乙,丙,丁两个人要在晚上从桥的左边到右边,此桥一次最多只能走两个人,而且只有一支手电筒,过桥时一定要用手电筒。四人过桥最快所需的时间如下:甲:2分钟;乙:3分钟;丙:8分钟;丁:10分钟。走得快的人要等走得慢的人,问最少需要多少分钟这四人都可以过桥。怎么过桥?

分析:因为每次过去两个人一定要回来一个人,那么我们可以让回来的这个人时间最少,而让过去的人时间尽量渐进。所以先让甲和乙过去,甲回来,需要3+2=5分钟;然后让丙丁一起过去,乙回来,耗时10+3=13分钟,然后甲乙一起过去,需要3分钟。总共需要21分钟。

练习:

1、四个人甲,乙,丙,丁两个人要在晚上从桥的左边到右边,此桥一次最多只能走两个人,而且只有一支手电筒,过桥时一定要用手电筒。四人过桥最快所需的时间如下:甲:5分钟;乙:6分钟;丙:11分钟;丁:12分钟。走得快的人要等走得慢的人,问最少需要多少分钟这四人都可以过桥。怎么过桥?

2、(思考题)爸爸妈妈带着弟弟,妹妹要渡船过河,渡口只有一只小船(无船工),并且小船只能载重50kg,已知爸爸和妈妈的体重都是50kg,弟弟和妹妹的体重都是25kg。问要渡几次才能把所有的人全部渡过去?

猫吃鱼问题

例题4:有4只猫,同时吃掉4条鱼要4分钟,如果按着相同的速度,100只猫同时吃掉100条鱼要多少时间?

分析:有4只猫同时吃掉4条鱼要4分钟,因为每只猫都在吃自己的鱼,互不影响。这话的意思其实就是每只猫吃掉自己的那只鱼要4分钟。按照这样的速度,则100只猫吃掉100条鱼也需要4分钟。

盈亏问题

例题1:幼儿园小朋友分苹果,如果每人分3个就多16个苹果,如果每人分5个就差4个苹果,那么,有多少个小朋友?有多少个苹果?

分析:两种分配方案,第一种方案是每人分3个,第二种方案是每人分5个,第二种方案比第一种方案每人多分5 — 3个,第一种方案分后还剩16个,按第二种方案还差4个,那么在每个小朋友多分5 – 3个的基础上就还需16+4个苹果,(16+4)÷(5—3)就得小朋友的人数。

解法:(1)小朋友:(16+4)÷(5—3)=10(个)

(2)苹果:10×3+16=46个

答:有小朋友10个,苹果46个。

公式:(盈+亏)÷两种分法的差=参加分配对象的数量

注:多,有余简称盈;不足,少,简称为亏。

例题2:体育老师组织同学打羽毛球,每组分6个羽毛球的话少10个球,没组分4个羽毛球的话少2个。问学生们被分成了多少组?有多少个羽毛球?

分析:第一种方案少的球比第二种方案少的球多(10—2)个,这是由于每组少分(6—4)个引起的,用(10—2)÷(6—4)就可以求出学生分的组数。

解:(1)组数:(10—2)÷(6—4)=4(组)

(2)羽毛球数:6×4—10=14(个)

答:同学们共被分成了4组,共有14个。

公式:(大亏—小亏)÷两种分法的差=参加分配对象的数量

注:大亏,亏得比较多的;小亏,亏得比较少的。

例题3:老师为小朋友分配宿舍,如果每个房间住3个人,则多出来23人,如果每个房间住5人,则多出来3人。那么,宿舍有多少间?小朋友有多少个?

分析:第一种分配方案比第二种分配方案多出23—3人,是因为每一间房间住比原来多住进去了5—3人,用(23—3)÷(5—3)就可以求出房间数。

解:(1)房间:(23—3)÷(5—3)=10(间)

(2)小朋友:10×3+23=53(个)

答:宿舍有10间,小朋友有53个。

公式:(大盈—小盈)÷两种分法的差=参加分配对象的数量

注:大盈,盈得比较多的;小盈,盈得比较少的。

1、同学们乘车去烈士公园扫墓,如果每辆车坐55人,就余下10人没有座位,如果每车坐50人,就余下30人没座位。问有多少辆车,参加的同学有多少人?

2、商场购进若干件商品,如果每件卖12元,就盈利100元,如果每件卖14元,就盈利140元。问商场共购进了多少件商品?商品的成本共多少元?

3、用一根绳子去测井深,如果对折后来测量,绳子在井外多了8米,如果将绳子三折后来测量,还多了2米。求井深和绳长。

鸡兔同笼

例题1:鸡和兔关在一个笼子中,从上看有7个头,从下看有20条腿,问鸡,兔各有多少只?

解法一:(1)假设全是鸡,则腿共有:

2×7=14(条)

(2)腿比原来少了:20—14=6(条)

(3)兔:6(4—2)=3(只)

(4)鸡:7—3=4(只)

答:笼中有鸡4只,兔子3只。

解法二:

练习:

1、鸡,兔共有19个头,44条腿,问鸡有多少只,兔子有多少只?

2、停车场停有三轮车和小轿车共18辆,共有轮子62个,问三轮车有多少辆,小轿车多少辆?

例题2:30枚硬币全由2分和5分的组成,共9角9分,两种硬币各有多少枚?

解法一:9角9分=99分

(1)假设全是2分,则面值一共为:

2×30=60(分)

(2)比实际少:99—60=39(分)

(3)则5分面值的有:39(5—2)=13(枚)

(4)2分面值有:30—13=17(枚)

答:有2分面值的17枚,5分面值的13枚。

下载六年级数学应用题30道及答案word格式文档
下载六年级数学应用题30道及答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三年级数学应用题100道

    1.4棵杨树苗48元,3棵松树苗63元,哪种树苗每棵的价钱贵一些?2.三(1)班小朋友做玩具,一共做了48个,送给幼儿园15个,其余的平均分给一年级3个班,每班可以分得几个?3.张教师带100元去商场买3......

    三年级数学应用题100道

    1.39个同学在操场上跳绳,每3人一组,可以分成多少组? 2.4棵杨树苗48元,3棵松树苗63元,哪种树苗每棵的价钱贵一些? 3.三(1)班小朋友做玩具,一共做了48个,送给幼儿园15个,其余的平均分给一年......

    三年级数学应用题100道

    1、2008年2月1日是星期五,那么,2012年的3月1日是星期几? 2、下面的两个算式都是错误的,各移动2根火柴,使它们都变成正确的算式: 3、请你移动其中的一根火柴棒,使等号两边相等。 4......

    一年级数学应用题100道

    姓名: 得分: 家长签字: 日期: 1、 树上有10只鸟,飞走了7只还剩下多少只鸟? 2、 小明第一天写了8个字,第二天写了10个字,两天一共写了多少个字? 3、 盘子里共有10个苹果,小红吃了4个,还......

    四年级应用题60道及答案(推荐五篇)

    《四年级应用题60道及答案》 1、 一个滴水的水龙头一星期要白白流掉84千克水。照这样计算,一个月要流掉多少千克水?(一个月按30天计算。)(360)2、 学校开展花香校园活动,四年级3个......

    新人教版六年级数学上册寒假作业10道应用题

    新人教版六年级数学上册寒假作业一:10道应用题 1.六年级有学生112人,五年级比六年级多25%,五年级有多少人? 2.*第一机床厂,今年生产机床891台,比去年增产10%,今年比去年增产......

    4年级数学应用题试题及答案

    1、四年级三班34个同学合影。定价是33元,给4张相片。另外再加印是每张2.3元。全班每人要一张,一共需付多少钱?平均每张相片多少钱?2、一辆汽车从甲地到乙地共要行驶580千米,用了6......

    六年级数学应用题集

    1、一批零件平均分给张师傅和王师傅二人加工,王师傅完成自己的加工任务时,张师傅还有120个零件没有加工。已知张师傅和王师傅的工作效率比是5∶7。这批零件一共有多少个? 2、学......