第一篇:五年级数学可能性《掷一掷》教学设计
五年级数学《掷一掷》教学设计教案
紫云县板当小学教师:段小刚
一、教学内容:教材P50~51可能性—掷一掷
二、教学目标:
1、知识与技能:使学生通过猜想、实验、验证的过程,巩固“组合”的有关知识,探讨事件发生的可能性大小。
2、过程与方法:通过活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会到数学在生活中的应用。
3、情感、态度与价值观:结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
三、教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。
四、教学难点:让学生在“玩”中获得数学知识,在学中感受数学的趣味。
五、教学方法:创设情境;小组合作、实践操作。
六、教学准备:多媒体、骰子。
七、教学过程:
一、创设情境,引入新课 出示骰子,师问:同学们见过骰子吗?你们在哪见过?它和数学有什么联系?(学生可能回答:在打麻将时、玩具上见过;骰子上有6个数字。)学生回答后,师引导:这节课我们就来掷一掷骰子,通过游戏一起探究骰子里面还有哪些数学知识。
二、师生互动,探究新知
1.思考:如果同时掷出两颗骰子,它们出现的点数之和会有哪一些数?根据学生的回答板书:2、3、4、5……12。追问:可能有1和13吗?为什么? 学生自主思考,通过组合知识得出结论。(不可能,因为两个数的和最小是2最大是12。)
2.游戏探究。规则:把这11种结果分成两组:A组:1、2、3、4、10、11,B组:5、6、7、8、9。一共掷20次,总次数多者为胜。(l)选择一组结果与教师进行比赛。(2)两个小组为一个单位比赛,自由选择结果组别,4人轮流掷骰子,由组长记录试验数据,最后比较实验数据,分出胜负。学生操作时,组员轮流掷骰子,组长负责填写数据。掷骰子时要注意先在手中晃几下再投入杯子中。
3.汇报比赛数据和结论,师汇总并引导学生比较总结。比较发现:两数和为5~9出现的次数较多,说明B组获胜的可能性大。引导思考:为什么会这样? 引导学生通过观察两数和的统计表,并通过举例说明:如和是6的情况:1+5,2+4,3+3三种情况;和是2只有1+1这一种情况。比较总结:和是7出现的次数最多,和是5、6、8、9出现的次数比较多,和是2、3、4、10、11、12出现的次数比较少。
三、指导练习:1.教材第47页练习十一第9题。教师引导学生提出猜想,再组织全体不生参与演示,完成表格,验证猜想。2.完成教材第49页练习十一第10题。组织学生理解题目信息,让学生独立思考作答,小组订正。
3.完成教材第49页练习十一第11题。(1)引导学生理解题意。小组内合作完成,集体订正。(2)组织学生设计卡片,鼓励方案多样化。
四、拓展延伸
1.根据客观事实判断事件发生的确定性和不确定性。出示:明天的篮球比赛,我们班一定会赢。这种说法正确吗? 思路引导:篮球比赛的结果有两种可能:一种是我们班赢,另一种是我们班输。也就是说,我们班可能会赢。这个结果不是按照我们班同学的意愿而实现的。规范答案:这种说法不正确。明天的篮球比赛,我们班可能会赢。教师小结:生活中事件发生的确定性和不确定性要根据客观事实进行判断,与个人的意愿无关。
2.根据图形区域大小判断可能性的大小 下面是百草园文具店的投资活动规则,看图想一想,抽到哪种奖品的可能性大?抽到哪种奖品的可能性小?(满100元抽奖一次)指针所在区域
奖品 红色区域
一个文具盒 黄色区域
一个笔记本 绿色区域
一支铅笔 思路导引:区域越大,指针停在该区域的可能性就越大。从图中看出,绿色区域的面积最大,则指针停在绿色区域的可能性最大,所以抽到一支铅笔的可能性最大;红色区域的面积最小,指针停在红色区域的可能性最小,所以抽到一个文具盒的可能性最小。规范解答:抽到一支铅笔的可能性最大,抽到一个文具盒的可能性最小。教师小结:区域最大,指针停在该区域的可能性就越大;区域越小,指针停在该区域的可能性就越小。3.小组合作完成教材第114页第5题。
五、全课小结。这节课你有哪些收获? 引导学生说一说事件的发生可能性是有大小的。
六、作业:寻找身边涉及“可能性”的问题。
2016年11月10日
第二篇:五年级可能性 实践活动 掷一掷
湖南省教育科学“十一五”规划课题 小学数学教学资源开发研究——活动与游戏
实践活动 掷一掷
活动内容:课本118页和119页。
一、活动目标:
1.使学生初步体验事件发生的确定性和不确定性。
2.使学生学会列出简单试验所有可能发生的结果。
3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。
二、教学目标
1.使学生初步体验事件发生的确定性和不确定性。
2.使学生学会列出简单试验所有可能发生的结果。
3.使学生知道事件发生的可能性大小是不同的,能对一些简单
三、活动过程:
以连环画的形式来展示活动的过程。
(一)示范游戏
1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)
2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。
3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。
(二)小组内游戏,探索结论。
通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。
(三)理论验证
通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。
四、师生共同小结本次活动。
本次活动通过让学生猜想、实验、验证等过程,让学生在问题情境中自主探索,解决问题,既发展了学生的动手实践能力,又充分调动了学生的学习兴趣。
湖南省教育科学“十一五”规划课题 小学数学教学资源开发研究——活动与游戏
收集整理 :郴州市九完小曾凡凤、李朝梅
第三篇:五年级数学上册《掷一掷》教学设计
活动课 掷一掷
【教学内容】
教材50页、51页的内容及相关练习。【教学目标】
1、通过本次活动,使学生亲身经历观察、猜想、试验、验证的学习过程,综合运用所学知识来探讨事件发生的可能性大小。
2、结合实际情境,培养学生提出问题、分析和解决问题的能力。
3、通过应用和反思累积数学活动经验,感受成功的体验,提高学生学习数学的兴趣。
【教学重点】综合运用所学知识来探讨事件发生的可能性大小。【教学难点】通过应用和反思累积数学活动经验,感受成功的体验,提高学生学习数学的兴趣。【教学过程】
一、学前检测
通过掷骰子,复习可能性相关内容。
二、出示P50 掷骰子游戏
师:同时掷两个相同的骰子(六个面上分别写着数字1~6),把两个朝上的数字相加,看和可能有哪些情况? 师:为什么和最小是“2”,最大是“12”?
三、合作交流,自主尝试探究
(一)小活动:和老师比赛,分别掷两个骰子,如果和是5,6,7,8,9,算老师赢,否则学生赢,想一想谁赢的次数多?
(二)同桌互相掷骰子比赛。
(三)小组合作探究。
师:为什么掷出和是5.6.7.8.9的同学又赢了呢? 接下来我们来做一个小实验,课件出示活动要求。活动要求:
两人一组,轮流掷。和是几,就在几的上面涂上一格。涂满其中任意一列,游戏结束。小组活动,展示,汇报。
(四)归纳总结
师:你能用我们学过的关于组合的知识来解释一下为什么和是5.6..7.8.9出现的次数比较多吗?
四、全课总结
通过今天的学习,你有什么收获?
五、布置作业
回家和爸爸妈妈玩一玩这个游戏,并给你的爸爸妈妈讲一讲其中的奥秘。
第四篇:《掷一掷》教学设计
教学内容:
人教版小学数学教材五年级上册第50~51页“掷一掷”相关内容。
教学目标:
1、通过本活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会数学在生活中的应用。
2、初步渗透比较、归纳,概率统计及有序思考等多种数学思想,通过现象看本质,感受偶然性后面的必然性。
3、结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
4、通过合作,培养学生的合作意识。
重点难点:
教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。教学难点:让学生在“玩”中获得数学知识,在学中感受数学的趣味。
教学准备:
教师准备红色、蓝色骰子各1个、课件一套;学生两人一组,每组红色、蓝色骰子各1个、彩色笔及“和”的组合统计表等。教学过程:
一、设置悬念,提出问题
1.认识“骰子”。课件出示“骰子”图片,请学生说出它的名称及特征。
2.创设情境,提出问题。通过庄家用掷骰子来设骗局引出本节课的主题──掷一掷。(出示课题:掷一掷)
二、学习新知,探索奥秘
(一)组合1.思考:一次掷一个骰子,面朝上的点数可能有哪些?不可能是哪些?
2.教师演示:同时掷两个骰子,算一算它们的和是多少?如果两个骰子朝上的两个面的点数相加的和是4,那么红色、蓝色骰子上的点数分别可能是多少?
3.猜一猜:一次掷两个骰子,得到的两个面朝上的点数之和可能有哪些?
(板书:点数之和可能有2,3,4,5,6,7,8,9,10,11,12。)
4.动手实践,验证猜想:同时掷两个骰子,每个同学掷几次,看看点数之和是不是在2~12之间?
(二)事件的确定性与可能性
1.刚才,有谁掷出两个骰子的点数之和是1或13的吗?
教师:看来,在上面的所有“组合”中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和是2,3,4,?,12都是
可能发生的事件;但两个骰子的点数之和不可能是1或13,这是一个确定事件。
2.思考:同时掷两个骰子,得到的两个朝上的面的点数之和可能为2,3,4,?,12,这些和出现的可能性大小一样吗?
教师:虽然掷出的两个骰子的点数之和可能是2,3,4,?,12中的任意一个数,但这些和出现的可能性大小是不同的。下面老师把可能出现的这11个和分成A、B两组,如下图所示:
(三)动手实践,探索奥秘
1.教师提出规则,学生猜想结果
(1)分组
教师:如果老师和你们玩“掷骰子”的比赛,你们想选哪一组的数?A组还是B组?
(2)猜一猜:如果掷出的两数之和在A组算老师赢,如果掷出的两数之和在B组算同学们赢,哪一组赢的可能性大?你是怎么想的?
(3)究竟谁赢的可能性大?哪些同学猜得对呢?让我们在比赛中见分晓吧!
2.动手实践,发现问题
(1)教师与部分学生游戏,课件出示游戏规则
(一)。
①如果掷出的两数之和在A组,算老师赢;如果掷出的两数之和在B组,算同学们赢。
②每个小组派出一个选手上台跟老师比赛,其他的同学当记录员,和是多少就在对应的数字上方涂一格,并按要求涂在下面的统计图中。
A组B A组
师生共同游戏,下面的同学做记录。
统计后,宣布赢家。
教师:在刚才一轮的游戏中,老师赢得多,同学们赢得少,同学们不服气,认为还有很多同学没有掷,不能说明问题。接下来继续掷,老师还会赢吗???为了体现公平、满足大家的要求,在下一轮的游戏中,我们每个人都动手轮流掷,好吗?
(2)全体学生参与游戏,课件出示游戏规则
(二)①继续游戏:两人一组,轮流掷,和是多少就在对应的数字上方涂一格。涂满其中任意一列,游戏结束。
②游戏结束后每小组派一名代表在黑板上用正字统计法来给最先涂满的和作记录。
学生两人小组进行游戏,并作好记录。
教师:观察实验统计结果,你们发现了什么?
想一想:为什么掷出的点数之和是A组数的可能性大一些,而点数之和是B组数的可能性小一些呢?
教师:其实,我们用数学上的“组合”知识来思考一下,就能揭开这个奥秘!
三、理论验证,揭示奥秘
1.教师引导学生思考:如果点数之和是2,那么红色骰子上是1,蓝色骰子上是多少?
2.如果点数之和是3,红色骰子上是1,蓝色骰子上是多少?;如果红色骰子上是2,蓝色骰子上是多少?还有其点数之和是3的情况吗?一共有几种情况?
3.点数之和是4的有几种情况呢?和是5呢?(学生回答后,教师在课件中依次呈现各种点数之和的组成情况。)
4.思考:和是2只有一种情况,和是3有2种情况,和是4有3种情况,和是5就有4种情况。那么,和是6,7,8,9,10,11,12又各有哪几种情况呢?红色骰子的可能点数是多少,蓝色骰子呢?
第五篇:五年级数学上册《掷一掷》评析
五年级数学上册《掷一掷》评析
上周三下午,数学组教师共同观摩了晓丽老师的《掷一掷》一课。这是一节活动性很强的课,其探究的数学内容具有较大的逻辑性,对于六年级上期的学生来说,要上好这节课并不难。可晓丽老师的整个教学过程,深刻地体现出新课标精神,着重培养学生的合作探究精神和动手实践能力,注意让学生在问题情境中自主探究,合作学习,解决问题,从而使学生的思维得到发展。听后反思,觉得有以下几点值得我学习:
一、以游戏为载体,整合学习
整节课紧紧围绕掷骰子的游戏内容,巧妙的将单元知识穿插在其中。如研究骰子和的组成情况时运用了“组合”知识;在讨论“和”的范围时渗透了事件的确定性和可能性知识,也渗透着数学思想;而在探索、比较掷出各种“和”的可能性时,充分展示了事件发生可能性大小的相关知识等等,有机的把新旧知识整合在一起,体现了实践活动的综合性,提高学生综合运用知识的能力。
二、以问题为引子,合作探究
本课逻辑性较强,因此创设有效的问题情境显得特别重要。例如:老师选:5、6、7、8、9;而学生选:2、3、4、10、11、12谁会赢?为什么只选了5个和的反而会赢,为什么中间数出现的次数会多一些等数学问题引起学生更深层次的思索。这问题具有的层次性、引导性。而在问题的引领下,通过师生互动,生生合作的自主的、探索性、研究性的学习,使学生的能动性和创造性得到有效发展,真正成为学习的主人。
三、活动为主注,推导并重
本课以活动为主线,全员学习。新课标提出,让学生参与学习的全过程,体验知识的形成过程。本课充分体现了新课标精神,让学生全员在活动中体验,在活动中明理,在活动中提升。以活动为主线,以学生为主体,老师只是配角,起到组织引领的作用。在整个教学过程中,几个操作让学生充分体验了知识的产生与获取的过程。先是小组合作,完成本课的第一个活动,探究师生游戏,后独立完成同时,学生动手操作后小结,小结后再动脑思考,依次反复几次,凸现了实践活动课的优越性,更是培养学生通过实践推理,归纳总结,获得真理的学习方法和习惯。
在有效的课堂学习时间里,学生沉浸在愉悦的学习活动中,主动构建知识,积极提升思维,获得进步与发展,因而取得了良好的效果。我觉得尤为重要的是让学生经历了“做科学”的过程,即引导学生体验猜想、实验、结论、疑问、再实验、分析、结论的思维过程,促进学生的思维更趋严密。
对学生来说,这是一次轻松、自由的数学探索!对我来说,这是一次数学活动课的样本教材。课堂中关注全体学生的全面发展,让他们享受教育、享受数学,使人人都能得到有价值的数学,人人都能得到愉快的发展,这就是本节课最大的亮点。