专题:不等式的习题
-
不等式习题
1.若方程x2(m2)xm50只有正根,则m的取值范围是.
A.m4或m4B. 5m4
C.5m4D. 5m2
2.若f(x)lgx22ax1a在区间(,1]上递减,则a范围为
A.[1,2)B. [1,2]
C.1,D. [2,)
3.若0yx
2,且tanx3tany,则xy的最 -
不等式综合习题
含绝对值不等式的解法习题
1.已知不等式|,(1)当a2时,解此不等式; x3||x4|a
(2)若|解集为,求a的取值范围。 x3||x4|a
2.已知f,(1)当a 5时,求f(x)定义域;(x)x1||x2|a
(2)若f(x)的定义域为R,求a的 -
不等式典型习题
1.若关于x的不等式x-1≤a有四个非负整数解, a的取值范围是
2.已知关于x的不等式组xa0的整数解共有5个,则a的取值范围是.
32x1
3. 若不等式(3a-2)x+2<3的解集是x<2,那么xab4.已知关于x的 -
一元二次不等式习题[
一元二次不等式基础的练习题
一、十字相乘法练习:
1、x2+5x+6=2、x2-5x+6=3、x2+7x+12=
4、x2-7x+6=5、x2-x-12=6、x2+x-12=
7、x2+7x+12=8、x2-8x+12=9、x2-4x-12=10、3x+5x -
解不等式习题(一)
解不等式习题(一)一、解下列一元二次不等式:
1.x27x602.x2x1203.x28x1204.3x216x1205.x24x506.2x215x707.2x211x1208.2x26x509.x22x3010.6x2x2011.x23x5012.2x211x6013.3x211x4 -
均值不等式的应用(习题+答案)
均值不等式应用一.均值不等式1.(1)若a,bR,则a2b22ab若a,bR,则ab2. 若a,bR*,则ab2*ab222ab时取“=”)ab若a,bR,则ab22ab(当且仅当ab时取“=”)ab若a,bR,则ab) (当且仅当ab时
-
不等式的证明方法习题精选精讲
习题精选精讲不等式的证明不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方
-
选修4-5不等式的证明方法及习题
不等式的证明方法一、比较法1. 求证:x2 + 3 > 3x2. 已知a, b, m都是正数,并且a < b,求证:ambmab变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断? 3. 已知a, b都是正数,
-
不等式的证明分析法与综合法习题(共5则范文)
2.3不等式的证明(2)——分析法与综合法习题知能目标锁定1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;2.了解综合法的意义,熟悉综合法证明不等式的
-
不等式知识点整理
不等式知识点整理一、不等关系:1.实数的大小顺序与运算性质之间的关系:abab0;abab0;abab0.2.不等式的性质:(1)abba(自反性)(2)ab,bcac(传递性)(3)abacbc(可加性)(4)ab,c0acbc;ab,c0acbc(可乘性)(5)ab,c
-
不等式总结
不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a与b之间的大小关系 (1)a-b>0a>b;(2)a-b=0a=b;(3)a-b<0a<b.(4)若 a、bR,则(5)(6)a>1a>b;ba=1a=b;ba<1a<b.b2.不等式的性质(1)a>bb<a(对称性)
-
不等式基础知识汇总
不等式基础知识一、不等式的概念1.不等式的定义不等式:用不等号连接两个解析式所得的式子,叫不等式.不等式组:含有相同未知数的几个不等式组成的式子,叫不等式组.2.不等式的分类(1)按
-
不等式知识点
不等式
一.知识点:
1.不等式的性质:
2.不等式的解法:
(一) 整式不等式的解法;(二)分式不等式的解法;(三)指对不等式的解法; 重点:含参二次不等式的解法;
3.不等式的证明:(1)作差变形;(2)分析法
4.均值 -
不等式证明
不等式证明不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变
-
不等式证明
不等式的证明比较法证明不等式a2b2ab1.设ab0,求证:2. ab2ab2.(本小题满分10分)选修4—5:不等式选讲(1)已知x、y都是正实数,求证:x3y3x2yxy2;(2对满足xyz1的一切正实数 x,y,z恒成立,求实
-
专题六不等式
专题六不等式一.考试要求
1. 掌握不等式的性质和证明;掌握证明不等式的几种常用方法;掌握均值不等式;并能用以
上性质、定理和方法解决一些问题。 2. 熟练掌握解不等式的方法。 -
阿不等式专题
阿不等式专题2006年高中数学竞赛大纲对加试中不等式部分的要求全国高中数学联赛的加试命题的基本原则是向国际数学奥林匹克靠拢,总的精神是在知识方面略有扩展,适当增加一些课
-
高中数学不等式
数学基础知识与典型例题数学基础知识与典型例题(第六章不等式)答案例1.C例2. B例3. 675 例4. n3+1>n2+n例5.提示:把“”、“2”看成一个整体. 解:∵3=2(2)()又∵2≤2(2)≤6,