专题:常见不等式及线性规划
-
均值不等式及线性规划问题
均值不等式及线性规划问题学习目标:1.理解均值不等式,能用均值不等式解决简单的最值问题;2.能运用不等式的性质和均值不等式证明简单的不等式.学习重点:均值不等式的理解.学习难点:均
-
不等式与线性规划(共5则范文)
第四讲:不等式和线性规划 (一)不等式的性质 一、知识梳理:不等式的性质 性质 4:a> b, c> 0?________ ; a > b, c v 0?________ .以上是不等式的基本性质,以下是不等式的运算性质.
-
线性规划(最终五篇)
《线性规划复习》 导学提纲与限时训练 姓名:____________学号:____________ 班级:__________一、考试大纲要求:1 1 、会从实际情境中抽象出二元一次不等式组..2 2 、了解二元一
-
线性规划学习心得范文合集
《线性规划》学习心得 姓名:许英 学号:201502991104 经过学习《线性规划》,我获益良多,现在我主要从线性规划在实际生活中的应用来说说学习感触。 《线性规划》是运筹学的一
-
简单线性规划教案
简单线性规划教案 本资料为woRD文档,请点击下载地址下载全文下载地址教学设计 3.5.2 简单线性规划 整体设计 教学分析本节内容在教材中有着重要的地位与作用.线性规划是利用数
-
线性规划问题中目标函数常见类型梳理
线性规划问题中目标函数常见类型梳理必须做并保管好——王永富一、直线的斜率型x2y24y3例1.已知实数x、y满足不等式组,求函数z的值域. x1x0注意:当目标函数形如zya时,可把z看
-
两个常见不等式的证明及推广
龙源期刊网 http://.cn
两个常见不等式的证明及推广
作者:姬婷 魏春强
来源:《学园》2013年第13期
【摘 要】本文根据两个常见不等式的证明和分析,引发联想,进而推广,得到命题1和 -
0.均值不等式的常见题型
均值不等式的常见题型 一 基本习题 2、已知正数a,b满足ab=4,那么2a+3b的最小值为( ) A 10 B 12 C 43 D 46 3、已知a>0,b>0,a+b=1则11的取值范围是( ) abA ( 2,+∞) B [2,+∞) C
-
证明不等式的常见方法4★
证明不等式的常见方法4 三角代换法 例 已知xR,求证:-1≤x+1x2≤2 2解:∵xR 又 1x01x1 ∴可设x=sin(-22) 则有y=sin +∣cos ∣ ∵-22 ∴cos≥0 ) ∴y=sin ∵- + cos=2sin(+422
-
高考二轮复习数学理配套讲义3 不等式与线性规划
微专题3 不等式与线性规划命题者说考题统计考情点击2018·全国卷Ⅰ·T13·线性规划求最值2018·全国卷Ⅱ·T14·线性规划求最值2018·北京高考·T8·线性规划区域问题2018
-
高等数学中几个常见不等式及其应用(共5篇)
本科毕业论文(设计) 题 目:高等数学中几个常见不等式及其应用 学 生: 学号: 学 院: 专业: 入学时间: 年 月 日 指导教师: 职称: 完成日期: 年 0 月 日 1 高等数学中几个常见不等式及其
-
利用导数证明不等式的常见题型经典[★]
利用导数证明不等式的常见题型及解题技巧技巧精髓1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题
-
线性规划练习2(推荐五篇)
线性规划综合练习一 、选择题 1.设变量 x、y 满足约束条件 6 32x yy xx y,则目标函数 z=2x+y 的最小值为( )(A)2(B)3 (C)4 (D)9 2.设z=x-y,式中变量x和y满足条件 , 0 2, 0 3y xy x则z的最小值为
-
线性规划知识点总结[精选5篇]
线性规划知识点总结 1.线性规划的有关概念: ①线性约束条件: 在上述问题中,不等式组是一组变量x,y的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件. ②线性
-
线性规划的基本理论及其应用
第一章 线性规划的基本理论及其应用 一、线性规划问题的单纯形解法 1. 线性规划问题的基本概念 2. 单纯形解法 二、对偶问题 1. 对偶问题的基本概念 2. 对称的对偶性规划 3.
-
线性规划的对偶规划
1对偶问题的形式 设原线性规划问题为: maxZcixi i1na11x1a12x2a1nxnb1a21x1a22x2a2nxnb2 s..taxaxaxbmnnmm11m22xj0,j1,2,,n则称下面线性规划问题: minWbiyi i1ma11y1a21y2am1
-
简单的线性规划教案一
简单的线性规划教案一 【教学目标】 1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解
-
线性规划单纯形法matlab解法
线性规划单纯形法matlab解法 %单纯形法matlab程序-ssimplex % 求解标准型线性规划:max c*x; s.t. A*x=b; x>=0 % 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后