专题:等差数列等比数列练习
-
等差数列、等比数列知识点梳理
等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:anan1d(d为
-
等差数列、等比数列综合习题
等差数列等比数列综合练习题 一.选择题 1. 已知an1an30,则数列an是 A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列 1,那么它的前5项的和S5的值是 231333537A. B.C. D. 22223.
-
等差数列练习
等差数列练习
一、选择题
1.在等差数列{an}中,a1=21,a7=18,则公差d=
A.12B.13C.-12D.-13
2.在等差数列{an}中,a2=5,a6=17,则a14=
A.45B.41C.39D.37
3.已知数列{an}对任意的正整数n,点Pn(n,an)都在 -
等差数列与等比数列的性质
第24课 等差数列与等比数列的性质●考试目标主词填空1.等差数列的性质.①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2
-
等差数列与等比数列的证明
龙源期刊网 http://.cn
等差数列与等比数列的证明
作者:刘春建
来源:《高考进行时·高三数学》2013年第03期
一、 考纲要求
1. 理解等差数列的递推关系,并能够根据递推关系证明 -
等比数列练习二
等比数列练习二
1.在等比数列{an}中,如果a6=6,a9=9,那么a3等于
A.4B.32C.16
9
D.2
2.各项均为正的等比数列{a11
n}中,q2,那么当a616
时,该数列首项a1
的值为 A.1B.-1C.2D.-2
3.在等比数列{an -
类比探究等差数列和等比数列的性质
类比探究等差数列和等比数列的性质上海市桐柏高级中学李淑艳 马莉上海市普陀区教育学院刘达一、案例背景本课的教学内容是上海市高中课本《数学》(华东师范大学出版社)高中二
-
等比数列等差数列前n项和习题。(精选)
一. 选择题
1. 若等比数列an的前n项和Sn3na则a等于 A. 3B. 1C. 0D. 1
2. 等比数列an的首项为1,公比为q,前n项和为S,则数列
A.
1S
1
的前n项之和为na
B. SC.
Sq
n1
D.
1q
n1
S3. -
等差数列与等比数列的证明方法[最终定稿]
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法
-
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导
在等差数列{an}中, a7=9, a13=-2, 则a25=
A-22B-24C60D64
在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=
A864B1176C1440D15 -
等差数列和等比数列的中项性质的拓展
等差数列和等比数列的中项性质的拓展———福贡县第一中学杨豪摘要:等差数列和等比数列的中项性质是高中数学中的一个重要内容,也是高考数学命题的一个热点。如果我们从本质上
-
等差数列、等比数列的证明及数列求和5篇
等差数列、等比数列的证明1.已知数列an满足a11,an3an12n3n2, (Ⅰ)求证:数列ann是等比数列;(Ⅱ)求数列an的通项公式。2.已知数列an满足a15,an12an3nnN*, (Ⅰ)求证:数列an3n是等比数列;(Ⅱ)求数
-
等比数列速成练习5则范文
等比数列性质 速成练习
1、在等比数列{an}中,an>0,且an+2=an+an+1,求该数列的公比q;
2.等比数列{a n }中,已知a9 =-2,求此数列前17项之积;
3.等比数列{an}中,a9+a10=a(a≠0),a19+a20=b,求a99+a10 -
数列练习2 等比数列
探究点1 等比数列中基本量的计算1、在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=__________.2、设Sn为等比数列{an}的前n项和,8a2+a5=0,则等于3、等比数列
-
等差数列重点题型练习
等差数列重点题型练习
一、选择题
1.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于A. 50B. 100C. 150D. 200
2.在数列{a2n}中,a1=1,an+1=an-1(n≥1),则a1+a2+a3+a4 -
第2课时--等差数列与等比数列的基本运算
一.课题:等差数列与等比数列的基本运算二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n项和的公式,并能利用这些知识解决有关问题,培养学生的化归能力.三.教学重点:对等差数
-
deng等差数列与等比数列的证明方法(共五则)
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法
-
等比数列前n项和练习一
等比数列的前n项和练习一
1.数列111
2,4,8,…的前10项和等于 A.1B.5111023D.11024 512C.1024512
2.已知Sn是等比数列{an}的前n项和,a5=-2,a8=16,则S6等于 A.21B.-2117D.-1788C.88
3.