专题:导数构造解真题
-
各种构造解导数压轴题
活用构造策略进入解题佳境 ——例说各种构造法解决导数压轴题 古县二中林立飞 摘要:函数与导数是高考的重要考点,不等式的恒成立问题、函数的零点问题、函数的极值点问题,随着
-
构造函数解导数
合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:
-
导数的应用(构造法)
导数的应用(构造法证明不等式)1.已知函数f(x)lnx(p0)是定义域上的增函数. (Ⅰ)求p的取值范围;(Ⅱ)设数列an的前n项和为Sn,且an2. 已知函数f(x)alnxax3在x=2处的切线斜率为1,函数g(x)
-
导数典型题(本站推荐)
1. 已知函数f(x)alnx1(a0)
(I)若a=2,求函数f(x)在(e,f(e))处的切线方程;
1(Ⅱ)当x>0时,求证:f(x)1a(1) x2.设函数f(x)lnxx2ax(aR).(I)当a=3时,求函数f(x)的单调区间;
3(Ⅱ)若函数f(x -
一道构造函数解不等式题-段爱东
2例.定义域为R的函数f(x)满足f(x)f(x)x,且在,0上单调递增,若f(2a)f(a)22a,求a的范围 (x)2x2f(x)0 解:由f(x)f(x)x得f(x)222x2设F(x)f(x)则F(x)f(x)x 2又a,1x0,f(x)单调递增,f(x)0
-
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
2019年一级建筑师材料与构造真题
2019年一级建筑师材料与构造真题1.有玻璃肋和玻璃组成的玻璃幕墙叫——DA明框幕墙B半隐框幕墙C隐框幕墙D全玻璃幕墙2.环氧树脂涂层属于什么涂料?——CA,外墙涂料B,内墙涂料C,地
-
构造函数巧解不等式
构造函数巧解不等式湖南 黄爱民函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,
-
构造函数,妙解不等式
构不等式与函数是高中数学最重要的两部分内容。把作为高中数学重要工具的不等式与作为高中数学主线的函数联合起来,这样资源的优化配置将使学习内容在函数思想的指导下得到重
-
高中数学构造函数解决导数问题专题复习
高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数(Ⅰ)当时,
-
高二数学2-2导数中构造函数
1.已知f(x)为定义在(,)上的可导函数,且f(x)f(x) 对于任意xR恒成立,则A. fe2f(0),
B. fe2f(0),
C. fe2f(0),
D. fe2f(0),
1.A
【解析】解:因为f(x)为定义在(,)上的可 -
高考数学导数题
已知函数f(x)=x^2+2x+alnx
(1)若函数f(x)在区间【0,1】上恒为单调函数,求a范围
(2)当t≥1时不等式f(2t-1)≥2f(t)-3恒成立,求a的范围(1) f'(x)=2x+2+a/x=(2x^2+2x+a)/x
因为x>0,所以f'(x)的 -
历年吉林申论真题全解
2010年吉林省录用公务员考试《申论》试卷(甲级) 一、注意事项 1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。 2.作答时限:12
-
2018全国Ⅰ理科数学真题 解答题
解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分) 在平
-
巧用构造法解不等式问题
巧用构造法解不等式问题湖州中学黄淑红数学中有许多相似性,如数式相似,图形相似,命题结论的相似等,利用这些相似性,通过构造辅助模型,促进转化,以期不等式得到证明。可以构造函数、
-
构造向量巧解不等式问题
构造向量巧解有关不等式问题新教材中新增了向量的内容,其中两个向量的数量积有一个性质:ab|a||b|cos(其中θ为向量a与b的夹角),则|,又,则易得到以1cos1ab|||a|||bcos|下推论:(1)ab|ab|
-
函数解答题-构造函数证明不等式
函数解答题-构造函数证明不等式 例1(2013年高考北京卷(理))设L为曲线C:ylnx在点(1,0)处的切线. x(I)求L的方程;(II)证明:除切点(1,0)之外,曲线C在直线L的下方.【答案】解: (I)设