专题:导数压轴题构造法

  • 各种构造解导数压轴题

    时间:2019-05-14 11:35:15 作者:会员上传

    活用构造策略进入解题佳境 ——例说各种构造法解决导数压轴题 古县二中林立飞 摘要:函数与导数是高考的重要考点,不等式的恒成立问题、函数的零点问题、函数的极值点问题,随着

  • 导数的应用(构造法)

    时间:2019-05-12 20:34:50 作者:会员上传

    导数的应用(构造法证明不等式)1.已知函数f(x)lnx(p0)是定义域上的增函数. (Ⅰ)求p的取值范围;(Ⅱ)设数列an的前n项和为Sn,且an2. 已知函数f(x)alnxax3在x=2处的切线斜率为1,函数g(x)

  • 高考数学专题-导数压轴题特辑1

    时间:2022-02-26 21:20:00 作者:会员上传

    导数压轴题特辑1一.选择题(共3小题)1.设f'(x)是函数f(x)的导函数,若f'(x)>0,且∀x1,x2∈R(x1≠x2),f(x1)+f(x2)<2f,则下列各项中不一定正确的是(  )A.f(2)<f(e)<f(π)B.f′(π)<f′(e)<f′(2)C.f(2)<f′(2)﹣f′(3)<f(3)D.f′(3)<f(3)﹣f(2)<f′(2

  • 导数压轴题7大题型归类总结

    时间:2019-05-13 00:30:03 作者:会员上传

    导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 设a>0,函数g(x)=(a^2+14)e^x+4.ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围. 二、交点与根的

  • 导数压轴题 导数与数列不等式的证明

    时间:2019-05-14 15:49:32 作者:会员上传

    导数与数列不等式的证明 例1.已知函数f(x)alnxax3aR (1)讨论函数f(x)的单调性; (2)证明:112131nln(n1)(nN*) (3)证明:ln22ln33ln44ln55lnnn1nn2,nN* n(4)证明:ln2ln3ln4ln5l

  • 高考数学导数压轴题7大题型总结

    时间:2019-05-15 09:54:02 作者:会员上传

    高考数学导数压轴题7大题型总结 目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一

  • 导数证明不等式构造函数法类别(教师版)

    时间:2019-05-14 15:41:28 作者:会员上传

    导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:

  • 构造函数解导数

    时间:2019-05-14 15:41:26 作者:会员上传

    合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:

  • 导数证明不等式构造函数法类别(学生版)

    时间:2019-05-14 15:41:29 作者:会员上传

    导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:

  • 高中数学补习教案----导数压轴题7大题型归类总结

    时间:2019-05-13 04:17:49 作者:会员上传

    导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 涉及本单元的题目一般以选择题、填空题的形式考查导数的几何意义,定积分,定积分的几何意义,利用图

  • 构造函数法在导数中的应用(小编推荐)

    时间:2019-05-14 15:41:25 作者:会员上传

    构造函数法在导数中的应用 “作差法”构造 证明不等式或解决不等式恒成立问题都可以利用作差法将不等式右边转化为0,然后构造新函数[F(x)],最后根据新函数[F(x)]的单调性转化为[F

  • 构造函数法证明导数不等式的八种方法5篇

    时间:2019-05-14 15:41:29 作者:会员上传

    导数专题:构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、

  • 构造函数法

    时间:2019-05-12 20:35:18 作者:会员上传

    函数与方程数学思想方法是新课标要求的一种重要的数学思想方法,构造函数法便是其中的一种。
    高等数学中两个重要极限
    1.limsinx1 x0x
    11x2.lim(1)e(变形lim(1x)xe) x0xx
    由以上两

  • 导数典型题(本站推荐)

    时间:2019-05-12 20:34:48 作者:会员上传

    1. 已知函数f(x)alnx1(a0)
    (I)若a=2,求函数f(x)在(e,f(e))处的切线方程;
    1(Ⅱ)当x>0时,求证:f(x)1a(1) x2.设函数f(x)lnxx2ax(aR).(I)当a=3时,求函数f(x)的单调区间;
    3(Ⅱ)若函数f(x

  • 构造函数,利用导数证明不等式

    时间:2019-05-15 14:10:27 作者:会员上传

    构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(

  • 构造函数,结合导数证明不等式

    时间:2019-05-14 13:34:42 作者:会员上传

    构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘

  • 小升初数学压轴题

    时间:2019-05-14 10:50:00 作者:会员上传

    经常要做数学压轴题 1. 辆车从甲地开往乙地,如果把车速提高25%,可以比原定时间提前24分钟到达.如果以原速行驶80千米后,再将速度提高1 /3 ,则可以提前10分钟到达乙地.甲、乙两地相

  • 初二上册压轴题

    时间:2019-05-14 21:17:03 作者:会员上传

    1.△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度? 2.已知:如图,△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点