专题:复变函数泛函分析
-
实变函数与泛函分析-教学大纲
实变函数与泛函分析教学大纲 Functions of Real Variables and Functional Analysis 一、基本信息 适用专业:信息技术专业 课程编号: 教学时数:72学时 学 分:4 课程性质:专业核心
-
复变函数总结
第一章复数1=-1欧拉公式z=x+iy实部Rez虚部Imz2运算①②③④⑤共轭复数共轭技巧运算律P1页3代数,几何表示z与平面点一一对应,与向量一一对应辐角当z≠0时,向量z和x轴正向之间的
-
复变函数小结
复变函数小结 第一章 复变函数 1)掌握复数的定义(引入),知道复数的几何意义(即复数可看成复数平面的一个点也可以表示为复数平面上的向量) 2) 掌握 复数的直角坐标表示与三
-
泛函分析
1.设X,d为距离空间。证明:d
2.(1)收敛点列为柯西列。
(2)柯西列为有界列。 dx,y也是距离。 1dx,y(3)有收敛子列的柯西列是收敛列。
3.(1)叙述压缩映射定理。
(2)作业的应用。
4.证明:u,va -
实变函数与泛函分析初步-江苏教育考试院范文
高纲0871 江苏省高等教育自学考试大纲 02012实变与泛函分析初步 江苏教育学院编 江苏省高等教育自学考试委员会办公室 一 课程性质及其设置目的与要求 (一)课程性质与特点
-
大学复变函数课件-复变函数
第二章复变函数第一节解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设是在区域内确定的单值函数,并且。如果极限存在,为复数,则称在处可导或可微,极限称为在处的导数,记作,
-
复变函数教案1.1
第一章 复数与复变函数 教学课题:第一节 复数 教学目的:1、复习、了解中学所学复数的知识; 2、理解所补充的新理论; 3、熟练掌握复数的运算并能灵活运用。 教学重点:复数的辐角
-
泛函分析学习心得
泛函分析学习心得学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害
-
泛函分析学习心得
泛函分析学习心得 10数本6***2010224216
泛函分析是数学系基础数学专业的一门重要必修基础课程。是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。也由 -
泛函分析教学大纲
课号:218.116.1 泛 函 分 析 教 学 大 纲 (Functional Analysis) 学分数 3 周学时 4 一.说明 1.课程名称: 泛函分析 (一学期课程),第五学期(3+1)*18=72. 2.教学目的和要求
-
泛函分析教学大纲
一、教学目的 通过学习此章,理解线性算子的谱及分类,掌握紧集和全连续算子的定义及紧线性算子的谱。 二、教学重点 线性算子的谱及分类,全连续算子。 三、教学难点 紧集和紧线
-
大学复变函数课件-洛朗级数
第五章洛朗级数第一节洛朗展式双边幂级数设级数()它在收敛圆内绝对且内闭一致收敛到解析函数;考虑函数项级数()作代换则()即为,它在收敛圆内绝对且内闭一致收敛到解析函数,从而()在区域
-
复变函数第二版答案
班级活动策划 一、活动目的 圣诞节是基督教徒纪念耶稣的诞生的节日,是一个西方的节日,但是近年来,它却为越来越多的中国人所接受,并且渐渐被赋予了许多中国式的特色和内容。为了
-
复变函数教案7.3.2(五篇)
第七章 共形映射 教学课题:第三节黎曼存在定理 教学目的:1、充分理解黎曼存在定理极其重要意义; 2、充分了解边界对应定理; 3、了解线性变换的不动点; 4、掌握线性变换的保形性、
-
复变函数课后习题答案
习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)(2)(3)(4)解:(1),因此:,(2),因此,,(3),因此,,(4)因此,,2.将下列复数化为三角表达式和指数表达式:(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)3.求下列各式的值:(1)(2)(3)(4)(5)(6)解:(1)(2)(3)(4)(5
-
复变函数与电子信息工程
复变函数与电子信息工程我是这个学期才接触到复变函数与积分变换这门课,要很详细的说出复变函数与电子信息工程这个专业的关系与作用确实很有难度的,但我喜欢做的就是高难度的
-
复变函数教案(双语)(精选5篇)
复变函数论课程教学实施方案 章节、名称:第一章,第1、2、3节,I Complex number field, 1.1 Sums and products, 1.2 Operation, 1.3 Modulus and arguments 课时安排:2 教学方式
-
大学复变函数课件-复变函数的积分
第三章复变函数的积分复积分是研究解析函数的重要工具,解析函数的许多重要性质要利用复积分来证明。本章要建立的柯西积分定理和柯西积分公式是复变函数论的非常重要的基本定