专题:轴对称辅助线证明题
-
辅助线几何证明题
辅助线的几何证明题
三角形辅助线做法
图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 -
轴对称证明题训练2
轴对称证明题训练姓名班级学号分数1.如图,已知△ABC,∠CAE是△ABC的外角,在下列三项中:① AB=AC;② AD平分∠CAE; ③ AD∥BC.选择两项为题设,另一项为结论,组成一个真命题,并证明.ED AC
-
中考 数学证明题辅助线经典做法训练(推荐5篇)
新智慧辅导中心吴老师:***初中数学培优训练题补形法的应用班级________姓名__________分数_______一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适
-
初中几何证明题思路及做辅助线总结(五篇模版)
中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形
-
初中数学几何证明题作辅助线的技巧
人说几何很困难,难点就在辅助线。 初中数学几何证明题辅助线怎么画?辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 也可将图
-
中考数学2013年24题证明题及辅助线作法
2013年中考数学培优训练题一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适当的“补形”来进行,即添置适当的辅助线,将原图形填补成一个完整的、特殊的、简单
-
《初中几何证明题解题手册——思路.方法.辅助线添加》目录1
目录平面几何证明题的基本思路及方法中考几何题证明一般思路初中数学辅助线的添加类型初中几何基本图形辅助线添加七字歌诀初中几何基本图形辅助线添加七字歌诀完全解读第一
-
证明题(★)
一、听力部分
1—5 ACACB6—10 ABCBC11—15 ACABC16—20 CABAA
二、单选
21—25 ABBCC26—30 DBACC31—35 DCCDB
三、完形填空
36—40 BACCD41—45 AABAB
四、阅读理解
46-5 -
证明题
一.解答题(共10小题) 1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.如图,已知∠1+∠C=180°,∠B=∠C,试说明:AD∥BC.3.已知:如图,若∠B=35°,∠CDF=145°,问AB与CE是否平行,请说明理由.分值:显示解析4
-
证明题格式
证明题格式把已知的作为条件 因为 (已知的内容) 因为条件得出的结论 所以 (因为已知知道的东西) 顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 1 当 xx 时,
-
证明题格式
证明题格式把已知的作为条件因为(已知的内容)因为条件得出的结论所以(因为已知知道的东西)顺顺顺最后就会得出题目所要求的东西了谢谢数学我的强项1当xx时,满足。。是以xx为
-
中考辅助线的添加
一、专题精讲 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 1.利用一组对边
-
初中数学常见辅助线(精选)
三角形中
等腰三角形:1.做高2.做底边延长线与腰相等
等边三角形:1.做高2.内切圆,外接圆(不常用)
30°三角形:1.做垂直2.做60°角的平分线(不常用)
三角形条件中出现中点:1.连接顶点和 -
初中数学 全等辅助线
第13讲常见全等辅助线中考说明内容ABC全等三角形了解全等三角形的概念,了解相似三角形与全等三角形之间的关系掌握两个三角形全等的条件和全等三角形的性质;会应用全等三角形
-
初中数学辅助线总结
初中数学几何做辅助线的口诀-----作辅助线的方法和技巧 题中有角平分线,可向两边作垂线。线段垂直平分线,可向两端把线连。三角形中两中点,连结则成中位线。三角形中有中线,延
-
线性代数证明题
4. 设A、B都是n阶对称矩阵,并且B是可逆矩阵,证明:AB1B1A是对称矩阵. A、B为对称矩阵,所以ATA,BTB TTT11111证明:因为(AB1B1A)T(AB1)T(B1A)T(B)AA(B)BAABABBA则矩阵5. 设T1 AB1B1A
-
高等数学证明题
1. 证明:函数f(x)(x2)(x3)(x4)在区间(2,4)内至少存在一点,使f()0。证明:f(x)在[2,3]上连续,在(2,3)内可导,且f(2)f(3)0,由罗尔定理,至少存在一点1(2,3),使f(1)0,同理,至少存在一点2(3,
-
平行线证明题
平行线证明题直线AB和直线CD平行因为,∠AEF=∠EFD.所以AB平行于CD内错角相等,两直线平行EM与FN平行因为EM是∠AEF的平分线,FN是∠EFD的平分线,所以角MEF=1/2角AEF,角EFN=1/2